
A MARSHALL CAVENDISH m COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 2 	 No 14

BASIC PROGRAMMING 31

HOW TO PLOT GRAPHS 	 413

Making visual displays from your data

BASIC PROGRAMMING 32

COMMODORE KEYBOARD SYMBOLS

Useful for graphics or programming shorthand

GAMES PROGRAMMING 14

ADVENTURES—THE NEXT STEP 	422

Working up your own ideas

MACHINE CODE 15

rMOVING PICTURES—VIC/IX81 	 428

Fast-moving graphics for these machines

BASIC PROGRAMMING 33

IMPROVING YOUR DISPLAYS 	 433

Formatting a neat text page

MACHINE CODE 16

A DRAGON/TANDY ASSEMBLER 	440

To take the hard work out of assembly

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Digital Arts. Page 413, Howard Kingsnorth. Page 414, Tudor Art
Studios. Page 416, Kuo Kang Chen. Page 421, Digital Arts. Pages 422, 424, 426,
427, Paddy Mounter. Page 428, Jeremy Gower, Chris Lyon. Page 430, Chris
Lyon. Page 432, Richard Prideaux. Pages 433, 435, 438, Colin Mier. Pages 436,
437, Peter Reilly. Pages 440, 442, Artist Partners/Gino D'Achille.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1 .00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, pleasegive the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64. .

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

'HI

a
SPECTRUM 16K, Cr`I 4814128, and + 	I CODVAODORE 64 and 128

ACORN ELECTRON,

BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80 a 	 VIC 20 IT COLOUR COMPUTER

■ DRAWING GRAPHS OF
MATHEMATICAL FUNCTIONS

■ PLOTTING STEP G
■ SCALING AND DRAWIN

THE AXES

Add your computer's data handling
capacity to its graphics functions,
and you have the basis for a whole
range of programs to display any
information as a graph or chart

Data storage and processing is something at
which computers have always excelled. But,
unfortunately, it isn't so easy for a computer's
user to assimilate a mass of information. If you
are presented with a list of perhaps a hundred

figures, it's very difficult to see an overall
pattern.

For example, take a close look at the
following list of numbers: 132.09, 146.2,
132.89, 123.92, 147.01, 153.47, 132.09,
138.79, 147.57, 153.9, 140.04, 142.76, 152.76,
132.6, 135.09, 146.98. Now answer the follow-
ing questions:
a) Which is the highest number in the list?
b) What is its position in the list?
c) How many numbers are there below 135.5?
This isn't particularly easy, but imagine how

difficult it would be if there were five times as
many entries in the list.

The traditional answer to this sort of pro-
blem is to display the information graphically.
When the same data is presented as a chart, it is
easy to see which point is the highest, and how
far along it comes. Or, by ruling off at a
particular point, you can check all those values
which are above or below a certain level.

Of course, you could also get your computer
to make these checks for you and print out a
result, but this will not give you any feel for the

overall trends—and more often than not will
just result in another mass of incomprehen-
sible data for you to sort out.

In Applications, on page 257, you have
already seen one example of a program which
allows you to enter data which is then dis-
played in the form of a bar chart on the screen.
This article covers what's involved in writing
your own programs to draw linear graphs. And
in a later article, we take a closer look at the
other types of display—histograms and pie
charts, for example.

Note that the routines covered in this article
are beyond the scope of the ZX81, so there are
no programs for this machine. And because
you cannot directly access the graphics func-
tions in Commodore BASIC, the Commodore
64 programs use the Simons' BASIC cartridge
while Vic 20 owners need to use the Super
Expander cartridge.

STANDARD GRAPH FORMS
The structure of your program depends on

the form of the information
you wish to

display.

Where there is a mathematical relationshir
linking the data, you can make use of the
mathematical functions stored in your micro'
memory. For example, your micro is pro-
grammed with the trigonometric ratios—sucf
as sine, cosine and tangent—so it is simple tc
plot cyclical graphs, as was explained in the
article on pages 302 to 308, or as demonstratec
by the following program:

30 PLOT 0,76
40 FOR t=0 TO PI*10 STEP .3
50 DRAW 2,COS t*15
60 NEXT t

20 HIRES 0,1:MULTI 2,4,6
30 XX= 0:YY = 100
40 FOR T=0 TO n*10 STEP .3
50 LINE XX,YY,P5,—SIN(T)*50

+100,1
55 XX= T*5:YY= — SIN(T)*50 +100
60 NEXT T
999 GOTO 999

20 GRAPHIC 2
30 POINT 2,0,512
40 FOR T=0 TO n*10 STEP .3
50 DRAW 2 TO P40, — SIN(T)*250

+512
60 NEXT T

IEI
20 MODE1
30 MOVE0,512
40 FOR T= 0 TO PI*10 STEP.3
50 DRAWT*40,SIN(T)*150 + 512
60 NEXT

MI II
15 PMODE3,1
20 PCLS
25 SCREEN1,1
30 DRAW"BM0,95"
40 FOR T=0 TO 40*ATN(1)

STEP .06
50 LINE— (8*T,95-40*SIN(T)),

PSET
60 NEXT
150 GOTO 150

This program plots a sine wave, which has
many applications in science and technology,
in music and in graphics displays. Line 40
specifies a wave of five cycles (each cycle is
twice PI) and Line 50 specifies how the wave is
drawn. See pages 302 to 308 for a fuller
explanation of what is going on here. By
varying the values in these lines, you can alter
the shape of the wave considerably.

Only a few functions are stored in your
micro's memory, but you can plot any func-
tion, provided you define it in the program.

Add these next few lines to the last
program and RUN it again:

70 PLOT 0,60
80 FOR n=1 TO 220 STEP 5
90 DRAW 5,((110— n)*15)/200
100 NEXT n
110 PLOT 0,100
120 FOR n=1 TO 220 STEP 5
130 DRAW 5, — ((110 — n)15)/200
140 NEXT n

Cc
10 D=1:E=100
70 C = 2

80 XX = 80 —201
85T= —20:YY= (T-175)*D + E
90 FOR T= —20 TO 20
100 LINE XX,YY,80 +73,(T*T/5)

*D+E,C
105 XX= 80 + T*3:YY = (T*T/5)*D + E
110 NEXT T
120 IF D= —1 THEN 999
130 D= —1:E =120:C = 3:GOT080
140 GOTO 80

10 D=1:E=256
70 REGION 5
80 POINT 2,140,500*D+ E
90 FOR T= —100 T0100
100 DRAW 2 TO 540 + T*4,T*T/20

*D+ E
110 NEXT T
120 IF D= —1 THEN END
130 D= —1:E=E+512:REGION 2
140 GOTO 80

10 D=I:E=256
70 GCOL0,1
80 MOVE240,500*D+ E
90 FOR T= —100 TO 100
100 DRAW640 +T*4,T7/20*D+ E
110 NEXT
120 IF D= —1 THEN END
130 D= —1:E = E + 512:GCOL0,2
140 GOTO 80

NC POI
10 D=1:E=64
70 COLOR3
80 DRAW"BMO,"+ STR$ONT(109*D

+
90 FOR T= —127 TO 128

100 LINE— (127 + T,T7/150*D + E)
,PSET

110 NEXT
120 IF D= —1 THEN 150
130 D= —1:E = E + 64:COLOR2
140 GOTO 80

RUN the whole program to see, as well as the
sine wave, two parabolas—one inverted and
the other upright. In all these cases, the data to
be plotted is specified in a FOR ... NEXT loop.
For example, the Spectrum program uses one
loop for the sine wave and one for each of the
two parabolas.

IRREGULAR GRAPH FORMS
Most of the graphs you are likely to plot,
however, will be from data that have no
mathematical relationship. These data could
be figures for annual rainfall or for the profits
and sales of a business, any of which can
change unpredictably or for seasonal reasons.

If you were plotting the graph manually, the
first thing you would do is to set up the axes, so
let this be the first part of the program. Type
NEW then enter and RUN these lines:

140 DRAW 0,175
150 PLOT 0,0
160 DRAW 255,0

10 HIRES 0,1:MULTI 2,4,6
140 LINE 0,0,0,200,1
150 LINE 0,200,360,200,1
999 GOTO 999

10 GRAPHIC 2
140 DRAW 2,0,0 TO 0,1023 TO 1023,1023

10 MODE 1
140 DRAW 0,1024
150 MOVE 0,0
160 DRAW 1280,0

5 PMODE3,1
10 PCLS
15 SCREEN1,1
140 LINE(0,0)— (0,191),PSET
160 LINE (0,191) — (255,191),PSET
200 GOTO 200

In these lines the program selects a graphics
mode (except for the Spectrum where this is
not necessary) and then places the Y-axis along
the left-hand edge and the X-axis along the
bottom.

This is one of the commonest arrangements
for the axes, but you may have to be prepared
to shift them according to the range of the data.
For example, if you are plotting things like
profits and loss, or temperatures, you may
have negative values, so the X-axis needs to be
some way up the screen, instead of at the
bottom.

Another reason for shifting the axes is to
leave room for numbers, division marks and
labels (called legends) which are useful details
to have on a graph. There is no rule about the
amount of space you should leave; it depends

on how much information you wish to display.
Change the program as below to see the effect.
-46•301

130 PLOT 20,10
140 DRAW 0,155
150 PLOT 20,10
160 DRAW 235,0

1 0 HIRES 0,1: MULTI 2,4,6
140 LINE 10,0,10,190,1
150 LINE 10,190,360,190,1
999 GOTO 999

10 GRAPHIC 2
140 DRAW 2,100,0 TO 100,923 TO

1023,923

10 MODE 1
130 MOVE 200,150
140 DRAW 200,1024
150 MOVE 200,150
160 DRAW 1280,150

5 PMODE3,1
10 PCLS
15 SCREEN1,1
135 COLOR2

140 LI NE(20,0) — (20,160), PSET
160 LIN E(20,80) — (255,80), PSET
200 GOTO 200
RUN the program and notice that there -are
margins to the left and bottom of the screen.
To vary the size of the margin, change the
values in Lines 130 to 160, but note that on the
Spectrum and Acorn micros, Lines 130 and
150 should be identical.

Enter the next few lines to continue with the
program:

60 LET n = 10
70 PLOT 20,n
80 FOR x=1 TO 12
90 READ y
100 DRAW 18,y — n
105 LET n=y
110 NEXT x
1000 DATA 50,70,60,100,80,120,100,

130,70,140,90,110

70 XX = 10:YY =190
80 FOR X=10 TO 111 0+10 STEP 10
90 READ Y
100 LINE XX,YY,X,190 —Y,2
105 XX= X:YY =190 —Y
110 NEXT X
1000 DATA 190,10,130,50,160,0,100,70,

90,50,50,0

70 POINT 2,100,923
80 FOR X=100 TO 11 *70+100

STEP 70
90 READ Y
100 DRAW 2 TO X,923—Y
110 NEXT X
1000 DATA 500,600,410,800,300,923,

50,700,500,600,25,923

70 MOVE 200,150
80 FOR X=200 TO 11 *80 +200

STEP 80
90 READ Y
100 DRAW X,Y
110 NEXT
1000 DATA 250,400,300,700,500,900,

750,950,500,1000,700,850

70 DRAW"BM20,160"
80 FOR X=20 TO 20 +11*20

STEP 20
90 READ Y
100 LINE— (X,Y),PSET
110 NEXT
160 LINE(20,160)— (255,160),

PSET
1000 DATA 140,123,148,45,100,10,20,

8,45,8,45,30

The program plots 12 points, taking the X
values from Line 80 and Y values from Line
1000, and joins them to form a stepped graph.
The first value in the DATA statement is plotted
at the far left, along the Y-axis, but you could
have this plotted at the first X division (month
1, maybe), by changing the initial position to
which the cursor is moved. On all except the
Spectrum, this position is specified at Line 70,
the Spectrum is in Line 60.

The use of a DATA statement to store the
values is a good idea when the same values are
to be plotted many times, but if you wish to
plot different values each time, there is a better
method, using INPUTS. Add this line to the
existing program. It replaces the existing line
90. This works for all users of the micros
covered here, except the Commodores which
do not print an INPUT statement while in
graphics mode.

a
90 INPUT "Y Value ",y: LET y= y+ 10

[(CI
Since Line 10 selects a graphics mode, an
INPUT statement would not appear on the
screen, so because of this, the DATA statement
is the easiest method.

90 INPUT "Y VALUE ❑ ", Y:Y=Y +150

fiC1
First delete Line 15 then alter:

90 IN PUT"Y VALUE ";Y
130 SCREEN1,1

When you RUN the program, it waits for you to
enter the first Y value. Enter it and notice that
the program executes the first round of the
FOR ... NEXT loop at Line 80. Again the micro
waits for you to enter the next value, and so on
until all 12 values are plotted (use the ones in
the DATA statement at Line 1000, now
deleted).

The program works well, except that the
graph is cluttered with the input routine
printed by Line 90 (Commodore users will not
have this problem). Enter the lines below to
overwrite Lines 70 to 110, then RUN the
program again;

20 DIM y(12)
40 FOR n =1 TO 12
50 INPUT "Enter Y — Value El ",y(n): LET

y(n) = y(n) +10
60 NEXT n: CLS
70 LET n = 10
80 PLOT 20,n
90 FOR x = 1 TO 12
100 DRAW 18,y(x) — n
105 LET n = y(x)
110 NEXT x

10 DIM Y(11)
40 FOR N=0 TO 11
50 PRINT "El"NONPUT y(N):

IF Y(N)< 0 OR Y(N)>190
THEN 50

60 NEXT N:HIRES 0,1:MULTI 2,4,6
70 XX= 10:YY = 190
80 N=0
90 FOR X=10 T011 -10+10

STEP 10
100 LINE XX,YY,X,190 —Y(N),RND

(1)*3 + 1
105 XX= X:YY=190 —Y(N)
110 N=N+1
120 NEXT X
999 GOTO 999

10 DIM Y(11)
40 FOR N=0 TO 11
50 PRINT "0"NONPUT Y(N):

IF Y(N) <0 OR Y (N) > 923
THEN 50

60 NEXT N:GRAPHIC 2
70 POINT 2,100,923
80 N=0
90 FOR X=170 TO 12 .70+100

STEP 70
100 DRAW 2 TO X,923—Y(N)
110 N=N+1
120 NEXT X

Comparing DATA?

The ability to scale a graph can be parti-
cularly useful when you wish to display
more than one set of data on the screen at
one time. For example, you can compare
data for both halves of a year by drawing a
graph for the first six months at the top of
the screen, and one for the other months at
the bottom. You could read in the 12 items
of data into a single array, as in the
program, then step through the first six and
carry out the drawing routine, then repeat
for the next six. The only other consider-
ations are to specify the starting position for
each graph, and to modify the axes-
drawing routines, so that you draw two
instead of one axis. Alternatively, you could
have a single X-axis across the centre of
the screen against which both of the
graphs can be read.

20 DIM Y(11)
40 FOR N=0 TO 11
50 INPUT "ENTER Y—VALUE ❑ "Y(N):

Y(N)=Y(N)+150
60 NEXT : CLS
70 MOVE 200,Y(0)
80 N=1
90 FOR X=280 TO 11 .'80+200 STEP 80
100 DRAW X,Y(N)
110 N=N+1
120 NEXT

!HI
20 DIMY(11)
40 FORN = OT011
50 INPUT"ENTER Y — VALUED ";

Y(N)
60 NEXT
70 DRAW"BM20,"+STR$(1NT(Y(0)))
80 N=0
90 FOR X=20 TO 11*20 +20 STEP 20
100 LINE— (X,Y(N)),PSET
110 N=N+1
120 NEXT
When you RUN the program, you first loop
through the input routine from Line 40 to 60
12 times entering the Y values. These values
are stored in the array Y() as variables Y(1)
through Y(12) on the Spectrum and Y(0)
through Y(11) on the others. If instead of 12
values you wanted some other number, you
would merely redimension the array for the
required number. The screen is then cleared
and the cursor is moved to the first X,Y
position (Lines 70 and 80). The rest of the
program plots the graph from X values at Line
90 and Y values at Lines 100 to 110.

SCALING FACTORS
The figures for this graph were chosen so that
they fit conveniently within the range of the
axes and the screen. However, the values you
wish to plot will rarely be just right, but either
too large or too small—so you need to scale
them to bring them within range. The simplest
method of scaling is to study the values and
decide the factor by which they should be
multiplied to bring them within range. Here is
the complete new program, with all the
changes made:

20 DIM y(12)
30 LET xs= 2: LET ys = 1/50
40 FOR n=1 TO 12
50 READ y(n)
60 NEXT n: CLS
70 LET n=8
80 PLOT 40,n

90 FOR x=1 TO 12
100 DRAW •xs,(y(x)—n)*ys
105 LET n=y(x)
110 NEXT x
130 PLOT 40,8
140 DRAW 0,167
150 PLOT 40,8
160 DRAW 210,0
1000 DATA 4000,2000,6000,3000,

8000,4000,5000,2000,6000,1500,
3000,500

10 HIRES 0,1:MULTI 2,4,6
20 DIM Y(12)
30 XS =10:YS =1/60
40 FOR N=1 TO 12
50 READ Y(N)
60 NEXT N
80 XX= 10 + XS:YY= 190 — (YS*Y(1))
90 FOR X=1 TO 12
100 LINE XX,YY,10+X*XS,190—

(Y(X)*YS),RND(1)*3 +1
105 XX=10+X*XS:YY=190—

(Y(X)*YS)
110 NEXT X
140 LINE 10,0,10,190,1
150 LINE 10,190,360,190,1
999 GOTO 999
1000 DATA 4000,2000,6000,3000,

8000,1000,5000,2000,6000,1500,
3000,500

10 GRAPHIC 2
20 DIM Y(12)
30 XS =70:YS =1/10
40 FOR N=1 TO 12
50 READ Y(N)
60 NEXT N
80 POINT 2,100 + XS,923— (YS*Y(1))
90 FOR X=1 TO 12
100 DRAW 2 TO 100 + X*XS,923—

(Y(X)*YS)
110 NEXT X
140 DRAW 2,100,0 TO 100,923 TO 1023,923
1000 DATA 4000,2000,6000,3000,

8000,1000,5000,2000,6000,1500,
3000,500

1E1
10 MODE 1
20 DIM Y(11)
30 XS = 50:YS = .1
40 FOR N=0 TO 11
50 READ Y(N)
60 NEXT
70 VDU 29,200;150;
80 MOVE 0,YS*Y(0)
90 FOR X=0 TO 11
100 DRAW X*XS,Y(X)*YS

120 NEXT
130 MOVE 0,0
140 DRAW 0,1024
150 MOVE 0,0
160 DRAW 1280,0
1000 DATA 4000,2000,6000,3000,

8000,4000,5000,2000,6000,1500,
3000,500

11A 0
5 PMODE3,1
10 PCLS
20 DIMY(12)
30 XS = 20:YS =1/20
40 FORN =1 TO 12
50 READ Y(N)
60 NEXT
80 DRAW" B M20," + STR$ (INT(YS*Y (1)))
90 FOR X=1 TO 12
100 LINE— (X*XS,Y(X)*YS),PSET
110 NEXT
130 SCREEN1,1
135 COLOR2
140 LINE(20,0) — (20,160),PSET
160 LI NE(20,160) — (255,160), PSET
200 GOTO 200
1000 DATA 1600,1000,2500,3000,

3200,2000,2500,1000,3000,750,
1500,250

The program plots a graph of the values in the
DATA statement at Line 1000. This method
of input is used to save you having to type in
the values repeatedly, but you could revert to
the other method as explained above.

The scale factors are set at Line 30. Line 80
moves the cursor to the first X,Y position, and
the points are plotted by the loop at Lines 90 to
110. Lines 130 to 160 draw the axes.

This graph does not make full use of the
space available on the screen, so it might be
worth changing the scale factors at Line 30.
Try halving them or doubling them; then RUN
the program to see the different effects. To
scale the axes as well as the graph, add the scale
factor to the lines that draw them as below:

a
140 DRAW 0,2000*ys
160 DRAW 12*xs,0

140 LINE 10,190 — 8000*YS,10,190,1
150 LINE 10,190,12*X5 + 10,190,1

140 DRAW 2,100,923 — 8000*YS TO 100,923
TO 12*XS + 100,923

140 DRAW 0,8000*YS
160 DRAW 11*XS,0

IA
140 LI NE(20,0) — (20,3200*YS),

PSET
160 LINE(20,YS*3200)— (255,

YS*3200),PSET

RUN the program and notice the axes extend
only to the maximum values. The effect will be
more noticeable if you replace the initial values
in Line 30. Now you can cope with any value,
provided you change the scale values at Line
30 accordingly. Try some different values in
the DATA statement and practise varying the
scale factors. With very large numbers, you
need to leave a larger margin along the Y-axis.
Alternatively, you could retain the same mar-
gin, but PRINT a factor (for example, x10) by
which values along the Y-axis are multiplied.

To place some legends on the graph, enter
the next few lines and RUN the program:

210 FOR x=0 TO 12 STEP 2
220 PRINT AT 210(. 2 + 4;x
230 NEXT x
300 FOR y=0 TO 8000 STEP 2000
310 PRINT AT (8000 — y)/400,0;y
320 NEXT y

Lines 210 to 230 loop through the even
numbers from 0 to 12, which are PRINTed just
below the X-axis by Line 220. Similarly, the
numbers along the Y-axis are PRINTed by
Lines 300 to 320.

106 TEXT 2+ X*XS,191,STR$
(X),3,1,3

120 TEXT 2,50,"8000",3,1,7

Line 106 PRINTs the numbers 0 to 12 just
below the X-axis, and Line 120 PRINTs the
largest value (8000) at the top of the Y-axis.

120 CHAR 18,2,"0"
122 CHAR 18,10,"6"
124 CHAR 18,17,"12"
126 CHAR 2,1,"8000"

Lines 120, 122 and 124 PRINT 0, 6 and 12 just
below the X-axis, and Line 126 PRINTs the
largest value at the top of the Y-axis. You'll
have to change these numbers to suit each set
of DATA.

200 VDU 5
210 FOR X=2 TO 12 STEP 2
220 MOVE (X —1)*XS — 24, —15
230 PRI NT;X
240 NEXT

Could the listings be modified so
that a mixture of positive and
negative values can be entered
and plotted on the same graph?
The input routine can cope, as it stands,
with negative and positive values, but the
routines that position the axes and scale
the data will need to be modified. The
main difficulty is not to decide which are
the maximum and minimum values, but
to decide where to place the X-axis. If
you are prepared to position it for each
different set of data, the modification
is simple. Scan the data, insert
suitable scale factors and start to
draw at the origin of the axes.

300 FOR Y=2000 TO 8000 STEP
2000

310 MOVE —180,Y*YS
320 PRINT;Y;" ❑ —"
330 NEXT
340 VDU 4

Lines 210 to 240 loop through the even
numbers from 2 to 12, which are PRINTed just
below the X-axis by Line 230. The numbers
are PRINTed at positions given by Line 220.
Notice that the negative quantities are nece-
ssary to align the numbers with the axis.
Similarly, the numbers along the Y-axis, in
this case 2000 to 8000 in steps of 2000, are
PRINTed by Lines 300 to 330. Change these
numbers fqr different sets of DATA.

11A
Placing numbers on the graphics screen of
these machines is a little more difficult. You
cannot PRINT the standard character set, but
instead have to DRAW each letter individually.
The routine to do it is too long to be
reproduced here, but it has been dealt with on
page 192 and can be incorporated into the
program with suitable adjustment to the line
numbers.

FINISHING TOUCHES
All that remains is to add the finishing touches,
such as colour and labels. These are not
essential, but they help to make an attractive
display. As an exercise, try adding these
yourself, using GCOL, COLOUR and PRINT TAB
or PRINT AT statements. These commands and
how to use them are covered for each machine
on pages 84 to 91 and 117 to 123.

The uses of Commodore graphics
symbols extend far beyond just
making pictures. They are also
frequently employed as a form of
programming shorthand

One of the most perplexing problems facing a
newcomer to Commodore computers is the
extensive use of on-board graphics, many of
which find their way into program listings as
symbols for other functions.

ROM GRAPHICS
The Commodores have a rich selection of on-
board ROM (read only memory) graphics
which are accessible for any kind of screen
display. What you can access depends on
which screen display mode you're in: upper
case (capitals) and graphics mode (referred to
here as U + G), or upper case and lower case
mode (U + L). A greater number are available
when the computer is in U + G mode—to
which it is set on power up. You can toggle out
of this mode and into U + L mode by pressing
the 'SHIFT' key and the Commodore key— RE
simultaneously.

In direct mode you simply press either the
'SHIFT' or the key in conjunction with the
required key to obtain one of the two graphics
shown on the front of the key.

With IIE you can get the graphics shown
on the left hand of the key whether the display
is in U + G or U + L modes. The 'SHIFT' key
naturally produces capital letters when used in
U + L mode, but can be used to access the
right hand key graphics in U + G mode.

If you are unfamiliar with the ROM
graphics, switch on your computer and try out
the various keys. Pressing a key on its own
should result in its face 'value' being
displayed—but with two important exceptions
which we'll get to shortly (quote and insert
modes). So avoid pressing II or using I INST I for
the moment. Now press the same keys while
holding down the RE key. Then do the same
while holding down the 'SHIFT I key. A whole
series of graphics should be displayed. Don't
clear the screen yet.

Now toggle the display into U + L mode
and note that only the graphics which had been
produced with the RE key remain unchanged.

Direct mode graphics serve no function
other than to display what's available in ROM
although this can be useful if you're using
them actually within a program to construct an
appealing screen display. This short program
displays what's available:

10 FOR Z=0 TO 255
20 POKE 1024+Z, Z
30 POKE 55296+Z, 1
40 NEXT Z

10 FOR Z=0 TO 255
20 POKE 1024+Z, Z
30 POKE 38400+Z, 0
40 NEXT Z

As you can see when you RUN this, there are
two sets of characters—the second series simp-
ly takes the reverse form of the first.

PROGRAM GRAPHICS
The simplest way to use graphics from within a
program is to incorporate them within PRINT
statements as in the helicopter program on
page 31. But this may be laborious.

Each of the graphic characters has its own
particular Commodore ASCII code, and you
can use this value to create screen displays
using CHR$ (see pages 314 to 320). This short
program prints out 63 of the graphics charac-
ters available from the keyboard:

10 LO= 96 : HI=127
20 FOR LP= LO TO HI
30 PRINT LP, CHR$(LP)
40 GET A$: IF A$="" THEN 40
50 NEXT LP
60 IF LO=161 THEN STOP
70 LO=161 : HI=191
80 GOTO 20

Every time you press a key you'll see another
graphics character along with the ASCII value
used as the CHR$ argument.

A third way of accessing graphics from
within a program is to use Commodore's
special screen display codes—as used for the
first set of programs in this article.

These screen codes can take the value 0 to
255, the reverse graphics used as symbols
having values above 128. There are actually
two character sets—these relate to the U + G
and U + L modes—and only one set at a time
can be displayed on the screen. Note that
colour memory has to be POKEd with a suitable

colour at each location where a graphic ap-
pears. Remember that the screen code values
are different from the ASCII code values.

QUOTE MODE
Low resolution graphics are useful for supple-
menting high resolution graphics, but are no
alternative. And this is really a secondary role
to the use of symbolic graphics, obtained in a
line such as this by typing 'SHIFT' and
CLR/HOME1 after the first quotes:

10 PRINT "ET
The reverse heart symbol makes an ap-
pearance only after you've entered quote mode
or insert mode. You enter quote mode simply
by typing 111 and exit by typing W again. The
next time you type you re-enter quote
mode and exit it with the next—and soon. CLR
the screen and try typing in the line without
the first set of quotes!

While you've got a clear screen, try some-
thing else: enter insert mode by pressing 'SHIFT'
and IINST/ DEL I keys simultaneously—then
press 'SHIFT' and ICLR /HOM E I simultaneously.
Lo and behold, the reverse heart again!

Enter quote mode—you can do this in
direct mode simply by typingli—and find out
what symbols you get when MP d and
unl SHIFT led cursor keys are pressed, when the
I CTRL I key is used to access the colours and
reverse (obtained on keys 1 to 0) and when the
function keys are pressed.

EDITING PROGRAMS
The effect of quote mode and insert mode are,
superficially, identical—but the latter works
only once after going into insert mode. Quote
mode works until the next set of quotes or until
a program line terminates.

By itself, this is not really much of a
problem. Things change though when it
comes to editing a program line. For example,
press the cursor down key ten times after you
enter the first quotes in the following line:

10 PRINT "gggagogggggggigggigg
HELLO"

Press 'RETURN' to enter the line, then return to
its midpoint as if to do some editing—say, to
change some of these to cursor right symbols

■ PICTORIAL GRAPHICS
■ PROGRAMMING GRAPHICS
■ HOW TO OBTAIN SYMBOLS
■ EDITING
■ REFERENCE CHART

so that HELLO is displayed away from the left
hand edge of the screen.

All that happens when you try overwriting
the cursor down symbols is the cursor moves
to the right. Matters don't improve if you try
deleting unwanted symbols first.

There are two ways you can edit a line such
as this. It's simplest actually to enter quote
mode again by placing the cursor over the first
quote marks. Then retype the quotes and the
rest of the PRINT statement, including the
amendments you wish to make.

Alternatively, position the cursor to delete
unwanted symbols and when you've done this
use IINST to create extra spaces for the new
symbols or characters you wish to incorporate.
Each use of I INSTI allows one entry in insert
mode.

If, during the course of editing, you lose
track of what you are doing or, for instance,
you enter quote or insert mode unintention-
ally, simply I RETURN I the line and start editing
it again. Or retype the whole line from scratch.

TOKENS
The last thing for which the graphics symbols
are used on the 64 is for abbreviating the
keywords. Most of the reserved words have an
abbreviation, and generally this consists of
typing the first letter, and then ISHIFTI and the
second letter. A full list of the abbreviations,
how they look, and what to press to get them, is
given on pages 130 and 131 of the user manual.

COMMODORE PROGRAM SYMBOLS
What you want 	Keys to press 	 ASCII 	Appearance
Cursors:
cursor down 	 CRSR 4 	 17 	NI
cursor up 	 SHIFT and CRSR ft 	 145 	0
cursor right 	 CRSR 	 29 	Pi
cursor left 	 SHIFT and CRSR G 	 157 	it

CLR/HOME:
Cursor to top left 	CLR/HOME 	 19 	-7- ._,
Ditto, plus clear 	SHIFT and CLR/HOME 	147 	V
INST/DEL:
Delete character 	CTRL and T 	 20 	T
Insert character 	SHIFT and INST/DEL 	 148 	IN
Reverse mode:
Reverse on 	 CTRL and 9 	 18 	a
Reverse off 	 CTRL and 0 	 146 	■

Text Colour:
Black 	 CTRL and 1 	 144 	—I
White 	 CTRL and 2 	 5 	A
Red 	 CTRL and 3 	 28 	A
Cyan 	 CTRL and 4 	 159 	1
Purple 	 CTRL and 5 	 156
Green 	 CTRL and 6 	 30 	ii
Blue 	 CTRL and 7 	 31 	M
Yellow 	 CTRL and 8 	 158 	Tr.
Orange 	 ['3 and 1 	N.B. The last 	129 	4116
Brown 	 [43 and 2 	eight items in 	149 	r
Light Red 	 ['3 and 3 	column two will 	150 	X
Dark Grey 	 ['3 and 4 	not work on the 	151 	0
Medium Grey 	['3 and 5 	Vic 20. 	152 	•
Light Green 	 ['3 and 6 	 153 	II
Light Blue 	['3 and 7 	 154 	•
Light Grey 	 ['3 and 8 	 155

Adventures are like cigarettes—
they're addictive, can be bought
packaged, or you can roll your own.
Here's how to use the INPUT
adventure as a basis for your own

By now you should have a fully functioning
adventure game stored on tape. In exploring
its development, you have seen how all the
elements which make it up were brought
together, starting with just a bare outline of a
story. And this time you'll see how that game
can be used as a basis for your own home-
grown adventures.

Some hints about altering the adventure
have been scattered throughout the series of
articles, but this time you'll see in greater
depth what has to be done.

It won't always be possible to be specific
about the alterations, because many of them
will depend totally on the adventure you are
writing, but many alterations are simple to do
if you follow the instructions later in the
article. Some of the techniques may seem a
little daunting at first, but if you try to write a
simple, short adventure to start with you
should soon pick up the principles. In the early
stages don't try to make too many alterations
simultaneously, just work through the sections
of this article systematically and you shouldn't
go far wrong.

If you are a little puzzled by some of the
BASIC in the program, you can try looking in
Basic Programming where many of the more

common keywords have
already been covered.

Vic 20 and 16K Spectrum owners will not
be able to extend the adventure too much
because they will soon run out of memory. But
that is not to say that there is no scope at all for
extending the events in the adventure, or that
adventures with many more locations cannot
be written. Should you wish to write an
adventure with more rooms on these machines,
for example, then it would be quite possible to
trade off some other feature in favour of the
extra rooms. It really depends on what you
want from your adventure.

YOUR OWN ADVENTURE THEMES
Before you can write your own adventures,
you will have to invent a suitable plot or story.

The structure of a successful adventure
story is usually a very traditional one—there is
a beginning, a middle and an end, with a
structure imposed by the order in which the
puzzles are meant to be solved. It's lucky,
though, that you don't really have to be an
Agatha Christie to write adventure games.
There are lots of existing sources for ideas, as
you saw earlier, but to make it a little easier in
the early stages, here are a few suggestions.

You could structure an adventure around a
Whodunnit. The start could be a room with a
dead body with a knife sticking out of it, and
the point of the whole game would be to find
out who the murderer is. Perhaps you could

use a butler character instead of the tax
inspector. His role could be either to help or
hinder the adventurer.

There are various ways you could use a
castaway theme in your adventure. Try using a
traditional pirate-type castaway, or you could
have your adventurer being the sole survivor
of a jumbo jet crash. Setting the adventure in
the future, you could have a disaster in space
leading to the adventurer being marooned on a
hostile planet light years from civilisation with
a defeCtive rocket. The object of the adventure
could be to contrive some way to escape. The
locals could very well be hostile, and there is
plenty of scope for imaginative (and hidden)
escape routes.

Other escape plots could include escaping
from Alcatraz, or Colditz or Dartmoor—you
name it. Sources of inspiration could be any
one of a number of 'Escape from ...' books
that have been written—and if you can get a
map of the real place, so much the better for
planning out your locations.

Spies—either traditional ones, or even in-
dustrial espionage, stealing a rival's com-
puter design, perhaps—are likely to be (/
a very happy hunting ground for the
adventure writer.

You could plunder stories from history. The
Crusades are an obvious setting for an adven-
ture game, or any military campaign.

■ 	THINKING ABOUT A NEW

4
ADVENTURE

POSSIBLE THEMES
■ 	EXTRA LOCATIONS AND

EXTENDING THE GRID

fI/ Finally, how about something that's very
opical: an adventure set after a nuclear

' holocaust. The possibilities are wide: mutants,
finding radiation suits, marauding bands of
starving bandits, trying to find unpolluted
food and water, and so on.

MORE ROOMS?
The INPUT adventure is very small by any
standards, so you'll soon find that your own
adventures will outgrow this program.

Follow the instructions on pages 296 to 301
and you should have a grid suitable for
programming. The INPUT grid is 6 x 4
locations, 24 in all, of which only 12 are used.
If you decide to work within this, you can then
either alter the existing program, which is less
work but harder to follow, or type in a whole
new program—more effort, but perhaps less
confusing. Depending on which you choose,
you can either LOAD the existing program from
tape, or, if you have a printer, list it on to
paper. The adaptations that follow depend on

Wie size of grid you find yourself using. If you
have 24 locations or less, you can use the
\existing grid as it stands and draw your

map on that. If your map requires a
larger grid, draw this out and

number it as before.

■ NEW OBJECTS IN YOUR
ADVENTURE

■ NEW WORDS
■ WRITING VERB ROUTINES
■ LIST OF VARIABLES

la Mill
Having sorted out the grid you can progress to
entering your own set of location descriptions
on the machine. They should replace the
existing location descriptions after Line 5000.

Follow each location description with the
line containing the possible exits as in the
original program. The variables N, S, E, and W
correspond to north, south, east, and west.
They can be set to 0 or 1-4 means that there
is no exit in that direction, while 1 means that
there is a way out. The extra effort of typing in
REM lines with the location numbers is well
worth it.

Next change the ON . . . GOSU Bs in Lines
330 to 350. The first number following
GOSUB in Line 330 is the line number where
the computer will find the description of
location 1. If there isn't a location 1 in the
adventure—you don't have to use all the
squares on the grid—then zero is entered
instead. The next number is the line number of
the description of the second location, and so
on. There must be a number for all of the
locations in the grid.

MOVING AROUND
If you have designed an adventure which is
based on a different size grid from that used for
the INPUT adventure you'll need to alter the
movement routine at Lines 1000 to
1040. More specifically, the north and south
lines—Lines 1010 and 1030—will have to be
altered if the grid is no longer six squares wide,
since you add or subtract six to change row on
the grid. Simply count how many squares
there are across the top of the grid and change
the figure 6 to the width of your grid.

THE OBJECTS
The objects in your new adventure will be
different from those in the INPUT adven-
ture, so you'll have to make quite extensive
changes to Lines 160 to 260.

Count how many objects you are going to
use in the new adventure. This number gives
the value of NB and it should be the first piece
of data in Line 200 and will be used to
DI Mension arrays in Line 180, and to set up
FOR . . . NEXT loops elsewhere in the program.

It's clearest to use a separate program line
for each object, but if you've written a game
needing a large number of objects, you may
find that it's better to have more than one
object per line. Whichever way you decide to
enter your data the order must be right, as each
of the three pieces of data are fed into different
arrays. The order, then, is: location number,
short description, long description. If the
object only appears later on in the adventure,
perhaps after the adventurer has found it, or it
is something that appears randomly
like the tax inspector, the location
number should be zero.

NEW WORDS
Make a list of all the instructions that you will
be expecting the adventurer to give during the
adventure. The list should include single
words, such as the directions and HELP and
INVENTORY, and two-word commands like
GET LAMP or KILL LANDLORD.

The two-word inputs are split into V$ and
N$—verb and noun, although these are not
always strictly according to their grammatical
defmition. You are interested in all the single
words and the first word in each of the pairs.
For the program's purposes these are the
verbs—V$s. Group the verbs together accord-
ing to their meanings—CHEW and EAT, or
SMELL and SNIFF should be grouped tog-
ether, for example. Each of these groups will
need a number, so note that down too. It
doesn't matter what the number is, as long as
you know which number refers to which
particular group of words.

Now alter the program. The routine that
deals with verbs is from Line 110 to 150. The
verbs and their numbers are entered as data in
Lines 140 and 150, set out as pairs with the
numbers following the verbs.

Don't forget to re-D1Mension the arrays in
Line 120 and to adjust the FOR ... NEXT loop
in Line 130 according to the total number of
verbs you wish to use.

VERB ROUTINES
Each of the separate verb categories-
numbers—will need a separate routine.

It's difficult to give explicit instructions on
how to write these routines, because a good
proportion of the routines in any adventure
will not be of any use elsewhere.

But there are some routines which can be
used in any adventure, such as the GET and
DROP routines. These can be used unchanged
in any adventure that you write unless it's
something very innovative. Similarly,
INVENTORY—Lines 1070 to 1130—is the
same in any adventure, so you can use the
routine with no alterations as long as the array
is the same, and NB—the number of objects—
has the same meaning in the new adventure.

Other routines which might find another
home would include the lamp lighting routine
as lighting lamps is quite a common occup-
ation in adventures. The routine is at Lines
1490 to 1530.

The remaining routines are probably not
general enough for large-scale poaching, but
when you write your own verb routines there
are a few points to bear in mind. The routines
are basically there to check if the adventurer is
trying to do something to the correct object,
and in the right location. If the location is
wrong then the program should display a
message that's appropriate to the situation,
such as NOT HERE. Whatever the outcome,
make sure that the adventurer knows what the
effect of the last instruction was—in other
words, whatever anyone tells the machine to
do, there must be a printed response on the
screen.

When you have worked out your verb
routines enter them in the program. With the
program numbered similarly to the INPUT
adventure, the place for these routines is
between Lines 1070 and 2999.

The computer has to be able to select the
correct routine according to the verb that the
adventurer has used. In order that the com-
puter can do this Line 510 will have to be
altered.

All you have to do is to look at your verb
numbers list. Now, using that numerical order,
enter the start lines of the routine for each verb
after the ON . . . GOTO.

HELP ROUTINE
The final routine that you should turn your
attention to is the HELP routine. Consider
where the adventure might need a hint, and
use an IF ... THEN line to give the hint.

Other odds and ends such as the line which
makes the tax inspector appear—Line 320—
may need to be altered or deleted according to
the demands of your adventure. Also attend to
the start location set in Line 280.

VARIABLES ETC .

So that you can 'get inside' the adventure
program, here's a list of the variables and
arrays and what they're used for.

R$() 	array containing the verbs and
responses.
array of response numbers.

Corresponding elements • in the two arrays
above are the pairs of verbs and meanings.
OB() 	array containing the location num-

ber of each object.
OB$() 	array containing the short object

descriptions.
SI$0 	array containing the long object

descriptions.
Corresponding elements in the arrays above
contain information about a single object.
NB 	the number of objects in the ad-

venture. Used to DI Mension arrays
and set up FOR . .. NEXT loops.

L 	current location of the adventurer.
LA 	lamp status flag. Set at 1 when the

lamp is on, and 0 when it is off.
TA 	tax inspector flag.
N, E, S, W exit directions. Set at 1 if there is

an exit, and to 0 if there isn't
1$ 	the whole input before it's

split into verbs and nouns.
V$ 	the verb part of 1$.
N$ 	the noun part of 1$.
I 	number corresponding to a parti-

cular verb meaning. Used to pick
out the correct routine—the one
that handles that particular verb .

I N 	the number of objects in the
INVENTORY.

A$ 	the answer to DO YOU WANT
ANOTHER GO?
the number of the object dropped
—element G in array OB.

IIMINIMEN1111111
The Spectrum programs work a little differ-
ently from the others, owing to Spectrum
BASIC's lack of ON ... GOSUB and ON ...
GOTO. They are no great loss, though; the
program still works just as well and isn't any
more complicated to extend.

LOCATION DESCRIPTIONS
The first step in altering the Spectrum
program is to enter all the location descriptions
from your grid.

The descriptions are put at the end of the
program just as in the INPUT adventure.
Enter all the location descriptions in order,
each followed by the line containing the exit
direction information—the variables N, S, E,
and W refer to north, south, east and west, and
the values 0 and 1 refer to no exit and an exit
respectively.

Don't forget to enter the REM lines which
will enable you to keep track of the location
numbers which refer to the location
descriptions.

NEW WORDS
Make a list of all the things the adventurer will
instruct the computer to do during the
adventure.

You are interested in the verbs at this
stage—verbs as far as adventures are con-
cerned are not just limited to the strict gram-
matical defmition but are either the first work
in a pair, or those words that will be used on
their own. Group the words together accord-
ing to their meanings—the words which have
the same effect on the adventure such as GET
and TAKE or KILL and SHOOT. Each
group will need a number, so note that down
too.

The verbs and their numbers are put in the
DATA statements in Lines 140 and 150. Don't
forget to enclose all the verbs with inverted
commas. Follow each verb with its number
according to the meanings table.

Don't forget to re-D1Mension the arrays in
Line 120 and adjust the FOR . . . NEXT loop in

When you are planning your adventure,
try to think who is going to play the game,
the kind of interests and knowledge they

1IF might have—and how clever you might
expect them to be. Try not to pepper the
game with puzzles that would need a
degree in Astrophysical Sociology to
solve, for example.

If you decide to ask the player to
respond with specific facts, make sure you
have them correct—check tables or ref-
erence books, or you might find your-
self with many disgruntled adventurers.

Line 130 according to the total number of
words you wish to use.

The DI Mensions of the array will depend on
how many lines of data there are and how
many items of data there are in the longest line.
The first subscript is the number of pieces of
data in the longest line, and the second
subscript is the number of lines of data.

Feed all the data into Lines 40 to 70—if you
have a lot of data create some new lines
between these line numbers. In any case, count
how many pieces of data are in the longest line.
In the unlikely case that all the lines are the
same length, you do not have to take any
action. If they are not all the same length you
will have to fill up all the shorter lines with
zeros, to make them up to the same length as
the longest or else the program will not work
correctly.

VERB ROUTINES
Each of your separate categories of verb will
need a separate routine.

It is difficult to give explicit instructions on
how to write these routines because a large
proportion of them will be only applicable to
one particular adventure. However, the
INPUT adventure has a number of routines
which will be useful as they stand in most, if
not all, adventures.

For example, there are GET and DROP
routines which can be copied straight into any
adventure because they are fundamental rout-
ines if you are to use any objects in the game.
INVENTORY will be suitable for use in most
games, too; it's up to you whether you incorpo-
rate such a facility in the game, but it would be
a rather strange adventure without it!

The rest of the routines depend on the
requirements of the adventure. Take your lead
from how the routines are structured for the
rest of the existing program. Bear in mind
where and to what a certain verb could apply.

Check that the instruction has been applied
to the correct location and to the correct
object. Try to think through which wrong
instructions the adventurer could give, and
structure the routines accordingly.

Once you have written all the routines you
should enter them between Lines 1390 and
2999.

The computer has to be able to select these
routines according to the verb the adventurer
has used.

ARRAY G
In the Spectrum program the location descrip-
tion and verb routine lines are stored in the
array G.

The next stage in writing your new program
is to feed all of the line numbers into G. Lines

40 to 70 contain the line numbers. The first
three lines are the location descriptions, and
the last line contains all the starting lines for
the verb routines.

With G filled with line numbers, Lines 330
to 350 will pick out the correct location
description by picking out the correct element
in the array. The second subscript corresponds
to the array row that the number is in, so you
should make sure that the subscript is correct
in each of your GOTO lines, especially if you
have added some extra data lines.

MOVING AROUND
If the grid for your adventure is a different size
from that used for the INPUT adventure
you'll need to alter the movement routine at
Lines 1000 to 1040.

More specifically, the north and south
lines—Lines 1010 and 1030—will have to be
altered if the grid is no longer six squares wide.
Simply count how many squares there are
across the top of your new grid and change the
number 6 to the width of the grid.

THE OBJECTS
You will have to make quite extensive changes
to Lines 160 to 260 because the objects in your
new adventure will almost certainly be very
different from those in the INPUT adventure.

Count how many objects there are, and the
length of both the longest short description
and the longest long description. The number
of objects should be your first piece of data in
Line 200 and will be used as one subscript
when DI Mensioning the arrays in Line 180,
and to set up FOR . .. NEXT loops elsewhere in
the program. The second subscript in array B$
is the length of the longest short description,
and the second subscript in S$ is the length of
the longest long description.

It's clearest to use a separate DATA line for
each object, but if you've written a game
needing a large number of objects, you may
find that it's better to have more than one
object per line. Whichever way you decide to
enter the data, the order must be correct, as
each of the three pieces of data are fed into
different arrays. The order, then, is: location
number, short description, long description. If
the object only appears later on in the adven-
ture, perhaps after the adventurer has found it,
or it is something which appears randomly,
like the tax inspector, the location number
should be zero.

HELP ROUTINE
The final routine that you should turn your
attention to is the HELP routine. Consider
where the adventurer might need a hint, and
use an IF ... THEN line to give the hint.

Other odds and ends such as the Line which
makes the tax inspector appear—Line 320—
may have to be altered or deleted according to
the demands of your adventure. Also attend to
the start location in Line 280.

VARIABLES ETC .

So that you can 'get inside' the adventure
program, here's a list of the variables and
arrays and what they're used for.

G() 	array containing the line numbers
of the location descriptions and the
verb routines.

R$() 	array containing verbs and
responses.

R() 	array containing verb numbers.
Corresponding elements in the two arrays
above are the pairs of verbs and meanings.
B() 	array containing the location of

each object.
B$() 	array containing the short object

descriptions.
S$() 	array containing the long object

descriptions.
Corresponding elements in the arrays above
contain information about a single object.
NB 	the number of objects in the ad-

venture. Used to DI Mension arrays
and set up FOR ... NEXT loops.

L 	current location of the adventurer.
LA 	lamp status flag. Set at 1 when the

lamp is on, and 0 when it is off.
N, S, E, W exit directions. Set at 1 if there is

an exit, and to 0 if there isn't.
1$ 	the whole input before it's split

into verbs and nouns.
V$ 	the verb part of 1$.
N$ 	the noun part of 1$.

number corresponding to a parti-
cular verb meaning. Used to check
if a particular verb has been used at
some stages during the program.

IN 	the number of objects in the
INVENTORY.

A$ 	the answer to DO YOU WANT
ANOTHER GO?

G 	the number of the object drop-
ped—G is the element in array B.

Easy machine code graphics
n the Spectrum, Commodore 64,

BBC Micro, Electron, Dragon
and Tandy have been covered

in earlier chapters. Now it is
the turn of Vic 20 and ZX81
owners.

Neither of these two computers

f
have the sophisticated graphics

acilities of the others, and in fact,
they cannot really be considered

'graphics computers at all. But there
are ways of using machine code

to generate simple but impressive
on-screen effects.

I -3::K

The Vic 20 does not use sprite graphics like
Rile Commodore 64, nor do you have to define

a grid before you start building UDGs. Vic
graphics are done by redefining the character
set.

Each number, letter of the alphabet and
symbol that appears on the keyboard appears
on the screen as a pattern of pixels. These are
normally laid out in 8 x 8 squares. Those
pixels which are 'on' (lit on the screen) form
the pattern which makes up the symbol. The
rest—the pixels which are off, or not alight—
make up the background.

To build up some design of your own, all
you have to do is redefine which pixels are
alight in a particular letter to form part of the
design, then build up the whole figure by
PRINTing these redefined characters next to
each other. The number of characters you

Here's a chance for Vic 20 and ZX81
owners to create some simple
animated graphics. Use the routines
as they are or follow the instructions
to create your own characters

■ CREATING A BIKE AND
SUBMARINE ON THE VIC

■ MOVING THE CHARACTERS
■ A FLASHING ALIEN ON THE ZX81
■ PSEUDO HI-RES GRAPHICS

need is governed by the complexity of the
whole image, and how much detail you can get
into each character.

When building up a figure like the motor-
bike stunt rider shown below, you could divide
the whole figure up into eight small 8 x 8
squares and build the pattern up that way. But
the Vic 20 has a facility that will give you
double-height characters. Using this facility,
you only need to redefine four 8 x 16 charac-
ters for each figure.

Each normal-sized character is defined by
eight numbers, one for each row of pixels.
These numbers are worked out in exactly the
same way as the numbers defining the UDGs
on the other home computers (see page 38).
But 16 numbers are needed to define a double-
height character, again one for each row.
These are still worked out in exactly the same
way.

The numbers are READ into a protected area
of the Vic's memory and stored there as
machine code, then they are manipulated by
lines of BASIC to move the figure around.

The following program creates and moves
the stunt rider around the screen:

10 DATA 0,0,0,0,0,0,24,3,248,3,24,0,0,
0,0,0,3

12 DATA 0,0,0,0,0,0,0,64,127,127,19,
114,171,191,136,112

14 DATA 0,0,0,14,12,62,72,132,15,31,
254,220,253,249,65,0

16 DATA 0,0,0,0,0,128,96,240,248,240,
128,224,80,80,16,224

18 DATA 0,0,0,0,0,27,0,13,48,198,0,0,
0,0,0,0

20 DATA 0,0,0,0,0,0,0,71,63,63,4,26,
43,37,18,12

22 DATA 28,24,60,80,79,143,143,30,
246,190,252,240,128,0,0,0

24 DATA 128,96,248,240,224,192,112,
168,168,136,112,0,0,0,0,0

100 FOR Z=0 TO 15 +716:READX:
POKE 6144 + Z,X:NEXT

105 FOR Z=0 TO 15:POKE 6656+Z,
0:NEXT

110 POKE 36867,255: POKE 36869,
254:A$="MABC":B$="MEFG":
C$ = "@0"

120 POKE 36879,25: POKE 36878,15
125 PRINT "0"
200 FOR Z=0 TO 255:GET Z$
210 PRINT "E"TAB(Z)"0";:POKE

646,RND(1) . 3 + 2:PRINTM1D$
(C$,RND(1)*2 + 1,1);

220 IF Z$="" THEN PRINT A$:POKE
36877,200+ RND(1)"5:S= S + 20

230 IF Z$="PJ" AND Z<230 THEN
PRINT"0I";:Z= Z + 22:PRINT
TAB(Z)" ❑ i@"A$:GOTO 260

240 IF Z$="gg" AND Z> 30 THEN
PRINT" 01";:Z = Z — 22:PRINT
TAB (Z)" U MI D"B$:GOTO 260

250 IF Z$ < >"" THEN PRINT B$:POKE
36877,240+ RND(1)*5:IF S>0
THEN S= S — 40

260 FOR C=1 TO S:NEXT C,Z:GOTO 125

Lines 10 to 24 contain the DATA which defines
the shape of the image. Each line defines a
different character so there are 16 DATA entries
in each one. If you want to change the image
you can alter the DATA here to redefine each

character and so what is being displayed on the
screen.

Line 100 READs the DATA and POKEs it into
memory locations 6,144 to 6,271. Line 105 fills
the space character with zeros to ensure that
you have a blanking out routine where nothing
is PRINTed on the background.

In Line 110, POKEing 36867 with 255
switches on the double-height character facil-
ity, and POKEing 36869 with 254 redirects the
start of character memory pointer to ensure
that the particular character set you have
redefined is being used. (There are two other
character sets starting at 5,120 and 7,168
which can be accessed by POKEing 253 and 255
respectively into 36869.)

A$ and B$ put the characters ABC and EFG
together to make up the two figures of the
stunt rider—one driving normally, the other
doing a wheelie, as shown in below. The
reverse arrow at the front end of these strings
tells the Vic to make the motorbike blue. The
string C$ contains the two flame characters.

On Line 120, POKEing 36879 with 25 turns
the screen border white, and POKEing 36878
with 15 sets the sound volume. Line 125 clears
the screen. Line 200 sets up the FOR . . . NEXT
loop which moves the motorbike across the
screen, while the GETS readies the machine for
the keypresses which control the bike's
movement.

PRINTing a reverse S at the beginning of
Line 210 homes the cursor, which prevents the
screen scrolling. POKEing 646 changes the
colour of the next character—in this case
randomly—and the rest of the line PR INTs
randomly either of the two flame characters.

The next five lines PRINT and move the bike
along. Press the left/right cursor key and the
bike will travel down the screen, while press-
ing the up/down cursor key and the bike will
do a wheelie and move up the screen. Pressing
any other key makes it speed up, move forward
and do a wheelie.

The reverse £ sign makes the flame red
when moving up or down, or a random colour
otherwise. POKEing 36877 produces the sound
effects. And the variable S controls how fast
the computer goes round the loop, which
in turn controls how fast the bike moves
across the screen.

325 IF (X<110 OR X> 131)THEN POKE
36875,0:G = 0

330 IF G=0 THENFOR D = OT0109:
POKE 36877,D+ 130:POKE 36879,
D:POKE36877,230 — D:NEXT:
GOTO 200

335 POKE 38400 + X,2:POKE 7680
+ X,CH

340 GOTO 200

THE SUBMARINE
To construct the submarine, the following
program only needs half as much data. The
graphic is only eight pixels deep, so you do not
need to use double-height characters. Again
the data are fed in a character at a time, but this
time you only need eight numbers to define the
character. The ten items of data in Line 5 are
used to create the random white wave dot
pattern. Hilitigtliatza„4--,

5 FOR Z=0 TO 9:READK(Z):NEXT:
DATA 0,128,64,32,16,8,4,2,1,0 40/01111.41

10 DATA 0,0,0,0,127,255,127,63
12 DATA 4,7,31,31,255,255,255,255
14 DATA 0,0,0,0,254,237,254,252
16 DATA 0,0,128,0,62,62,0,128
18 DATA 0,0,1,0,124,124,0,1
20 DATA 0,0,0,0,127,233,127,63
22 DATA 32,224,248,248,255,255,

255,255
24 DATA 0,0,0,0,254,255,254,252
100 FOR Z -= 0 TO 7 + 7*8:READX:

POKE 6144 + Z,X:NEXT
105 FOR Z=0 TO 7:POKE 6400 + Z,0:

NEXT:POKE 650,128
110 POKE 36867,24:POKE36865,60:

POKE 36869,254:A$ =
"ADIS @ABM111":B$ =
"A DEFFGgE"

120 POKE 36879,109:POKE 36878,15:
C$ =A$

125 Z=120:PRINT"D"TAB(Z);C$:G =0
200 GET Z$
210 PRINT "ErTAB(Z);
220 IF Z$ -=- "." THEN C$ = A$:Z= Z + 1:

IF Z>126 THEN Z=126:PRINT
"0"TAB(Z);

230 IF Z$ = "," THEN C$ = B$:Z = Z-1:
IF Z<111 THEN Z=111:PRINT
"Q"TAB(Z);

240 IF Z$ = " ❑ " AND G = 0 THEN G = 1:
N = 0:GOTO 300

245 W=K(RND(1)*10)
250 POKE 6400 + INT(RND(1)*8 +1)*2,W
260 PRINT C$
270 IF G =1 THEN 320
280 GOTO 200
300 IF C$ =A$ THEN X=- Z+ 4:CH = 3:ZZ= 1
310 IF C$ = B$ THEN X = Z:CH = 4:ZZ= —1
315 GOTO 335
320 N = N +1:POKE 7680 + X,32:POKE

38400 + X,1:POKE 36875,128 +
N*3:X= X + ZZ

The program is much the same as the stunt
bike's. In this case it is the full stop and the
comma key which turn the submarine around
by changing frames, and move it in the
opposite direction. The POKE 650,128 on Line
105 gives the effect of repeating a key press
when you hold the key down. And Lines 245
and 250 give the random pattern of white wave
dots on the blue background.

The new thing here is the torpedo firing
mechanism. When the space bar is pushed, the
computer jumps to the fire routine. Lines 300
and 310 look at which way the submarine is
facing and decide which way round the tor-
pedo should be, where it should start from, and
which way it should run.

Line 320 moves the torpedo across the
screen. The POKE 7680 + X,32 rubs out behind
the torpedo by overprinting the old image with
a space. The POKE 38400 + X,1 then POKEs the
background colour into the space. And POKE
36875 gives you the sound.

Line 322 checks to see when the torpedo has
reached the edge of the screen area, turns off
the sound again and cancels the torpedo
graphic by setting G to 0. When the torpedo
hits the border, Line 330 gives different
sounds by POKEing 36877 with a succession of
different values, and flashes the border by
POKEing 36879.

Line 335 just POKEs the torpedo graphic
onto the screen with POKE 7680 + X,CH and
colours it red by POKEing 38400 + X with 2.

The only way to put graphics on the screen
with the ZX81 is to PRINT the graphic symbols
shown on the keyboard. But machine code can
be useful here too.

The following program creates an alien:

1 REM 	

10 LET A$ "2A0C40233ABC4047112100
FE00280319"

15 LET A$ = A$ + "10FD3ABD4016005
F1911 BE403ABB4OFE"

20 LET A$ = A$ + "00280311 CE400604
C506041 A77231310

25 LET A$ = A$ + "FA011D0009C110
F0C9010000"

30 LET A$ = A$ + "0000000000000000
0000000000000000"

35 LET A$ = A$ + "8788880480850580
0280800106850586"

50 FOR N =16514 TO 16605
60 POKE N,16*CODE A$ + CODE A$(2)

—476
70 LET A$ = A$(3 TO)
80 NEXT N

Line 1 must contain at least 92 characters to
accommodate the 92 bytes of the machine code
program, which are entered in this BASIC
program as the character string A$.

Lines 10 to 25 contain the machine code
which actually prints the alien on the screen.
And the Os-16 bytes of them in all—in Line
30 overprint the graphic with blank spaces
when you move it.

Line 35 contains the details of the alien
itself. If you look at the string byte-by-byte—a
pair of digits at a time—and compare them
with the character set in Appendix A of your
ZX81 manual, you will see that they corre-
spond to the graphic and inverse characters.

These characters build up the alien block-
by-block in an 8 x 8 square, starting at the top
left and working across and down to the
bottom right. As the graphics characters them-
selves break the character square into quarters,
this gives an effective resolution of 8 x 8.

You can alter the graphic by changing the
numbers in this line. Be careful not to use the
code for any character that takes up more than
one character space—like AT, TAB, THEN or
LEN. These will crash the program when you
call it. Try designing your own alien on an
8 x 8 grid. Then put the appropriate numbers
into Line 35.

When you RUN this program, Lines 50 to
80 POKE the data in the strings into the space
occupied by the REM statement. And if you
LIST the program again you will see the
symbols corresponding to the machine code

appear in the REM statement. The last part of it
will show you the graphics characters that
build up the alien, end to end.

Now that the machine code has been POKEd
in and is protected by the REM statement, you
can delete all of this program except the line
containing the REM statement itself. Then you
can key in the following program which will
make the graphic move around the screen:

10 LET X=14
20 LET Y = 8
30 POKE 16571,1
40 POKE 16572,Y
50 POKE 16573,X
60 RAND USR 16514
100 LET A$ =IN KEY$
110 IF A$ = ""THEN GOTO 100
120 IF A$ = "Z" AND X > 0 THEN LET

X = X — 1
130 IF A$ = "X" AND X < 28 THEN LET

X = X + 1
140 IF A$ ="P" AND Y>0 THEN LET

Y = Y — 1
150 IF A$ ="L" AND Y<20 THEN LET

Y = Y + 1
160 POKE 16571,0
170 RAND USR 16514
180 GOTO 30

Lines 10 and 20 start the alien off in the
middle of the screen. Line 30 POKEs the

number 1 into the machine code program,
which tells it to print the graphic rather than a
blank space. Lines 40 and 50 POKE the Y and
X coordinates of the graphic (which specify
where it is on the screen) into the next two
bytes of the program. The program is then
called and the graphic is printed on the screen.

Lines 100 to 150 contain the standard
routine to move something around the screen
(see page 57). When the program is RUN,
pressing the Z key will move the alien left,
pressing X moves it right, P up and L down.

Line 160 POKEs 0 into the machine code
program, and when Line 170 Calls the program
again it tells the computer to print blank spaces
instead of the graphic. This is to rub out the
graphic so that it can move without leaving a
trail on the screen. Line 180 sends the com-
puter back round the circuit so that the graphic
can be reprinted in its new position.

INVERSING THE SCREEN
There are several other useful things you can
do with the ZX81 screen with machine code.
The following program inverses the screen—
that is, it changes everything that is black into
white and everything that is white into black.
It can be fed in using your machine code
monitor (page 280), although the routine
should be called from within a BASIC
program:

2A OC 40 06 17 23 7E FE 76 28 05 C6 80 77
18 F5 10 F3 C9

Call this with the command RAND USR start
address. The direct command RAND USR,
without a line number, clears the screen first so

the effect of the routine is not terribly impress-
ive. But even a simple program like:

20 LIST
30 RAND USR

will do, where RAND USR is followed by the
start address of the machine code routine.

You could, of course, add this routine to the
alien program above. The line of machine code
data should be added to the first program, the
one that creates the alien, as part of A$, in a line
like:

40 LET A$ = A$ + "2A0C400617237
EFE762805C6807718F510F3C9"

Note that this time the bytes are closed up with
no space between them.

Line 50 must be altered to POKE the extra
data into the REM statement and should read:

50 LET N =16514 TO 16624

And the REM statement in Line 1 should also
be lengthened by 19 characters. When the first
program has been RUN and all the lines except
the first REM statement have been deleted, you
have to modify the second program so that it
will call the inverse routine. This is done
simply by adding:

155 IF A$ = "I" THEN RAND USR 16606

The memory location 16606 is where this new
piece of programming starts, and that routine
will be called when you press the I key. Press
the I key once, and the alien will change from
black to white and its background will go from
white to black. Press it again, and it will change
back. Hold the I key down to make it flash.

PSEUDO HI-RES GRAPHICS
As you no doubt know, the ZX81 will not
display high resolution graphics. But there is a
way of producing what look like hi-res
graphics using machine code. This simple
program POKEs numbers into the first five
memory locations in a REM statement, then
calls the machine code program formed that
way.

10 REM
20 POKE 16514,62
30 POKE 16516,237
40 POKE 16517,71
50 POKE 16518,201
60 FOR N = 0 TO 30
70 POKE 16515,N
80 RAND USR 16514
90 NEXT N

This will give you something on the screen
that looks very much like hi-res graphics.
Unfortunately, there is no easy way you can
move or control them.

■ PLANNING THE DISPLAY
■ HOW TO POSITION TEXT

ON THE SCREEN
■ IMPROVING THE LAYOUT
■ ADDING COLOUR

The title page and other screen
displays in your program need to be
carefully planned and constructed if
you want a really professional look.
Here's how to do it

From the user's point of view, there are several
things that make the difference between a
program which seems well-designed and easy
to use and one which does not. Of course, the
first thing which will make the difference
between a professional-looking program and
an amateurish one is that it must work pro-
perly, without any bugs or awkward user
routines. And at a more theoretical level, the
program itself should be well structured and
easy to follow. The techniques you need to
ensure good structure and freedom from errors
have already been covered, on pages 173, 217,
334 and 375.

But even the best-written program is going
to look sloppy and amateurish if it isn't well
presented—in particular, if the screen display
is not neat and easy to follow. This is fairly
simple to ensure, but it does mean that you
need to give careful thought to formatting the
display. This means positioning PRINT and
INPUT statements correctly to create a neat and
interesting layout on the screen.

The article on page 117 explained the
various BASIC commands available on your
computer to control the position of characters
on the screen. Now, you will see how to use
them to set up a title page for an imaginary
game, 'INPUT'. Similar techniques can also
be used for displaying instructions, a menu, or
a prompt, and the first thing to do is to look at
tidying these up.

CLEAR INSTRUCTIONS
Nothing looks sloppier than a screen display
which is misspelt or which hasn't been
thought out properly. For example, you may
have noticed how many otherwise very good
games make such mistakes as PR I NTing 'you
have one lives left'.

This particular case is easily put right with a
simple IF . . . THEN statement (of the form: IF
L = 1 THEN PRINT "life"), and it reflects badly
on the programmer for not changing it. Make

sure that you remove any bugs of this type
from your programs before you start to worry
about the format.

You will probably find it helpful to keep a
few guidelines in mind when you are creating a
screen display.

The most important thing to aim for is
clarity. If words are too close together then
they will be hard to read, so space out the
different lines carefully. Make sure, too, that
none of the words are split onto two lines. If
this cannot be avoided, you should put a
hyphen at the end of the first half of the word
and make the break at a logical point.

If you need to PRINT something which is
I N PUTted by the user, such as the name on a
`hall of fame', you must ensure that what is
PRINTed does not interfere with the rest of the
screen. To do this, you could include a routine
which either doesn't allow names of more than
a certain number of letters (see page 377 for an
error-trapping procedure to do this), or which
makes sure that, whatever the length of the
name, it is put in a position that does not affect
the position of the score or other PRINTed
information on the screen.

Where you have a list, again such as a high
score table, you should PRINT each line starting
at the same column. This may seem obvious,
but even some commercial programs do not do
this.

The second thing to bear in mind when you
are designing a display, is that you should not
try to cram too much information onto the
screen at once. If you do put too much on, the
program user will not be able to remember it
all, and so will not be able to make the most of
your program.

At the same time, do not put so little
information onto the screen that you need to
PRINT a large number of screens. The hard
part is to get the balance right. Of course just
what this balance is depends on the program—
the simpler your program is, the better the user
will be able to understand it, and the less
instructions you will have to display.

USING COLOUR
Try and make the screen interesting. If you
can have a variety of colours on the screen at
once, do so: it brightens up the display, and so
makes it easier for the user to read, or to pick

out particular elements. You can choose
whether to colour the text or the background
or both, or just have a coloured border.

The Spectrum is lucky here, in that it has a
very versatile FLASH command. The chang-
ing picture that results from using flashing
colours (or from changing the colours of
certain words or objects if your computer does
not have a FLASH command or flashing
colours) provides a form of motion to your
picture, which is more interesting to watch
than a simple static display.

POSITIONING
As well as trying to follow these basic guide-
lines, you should always position words on the
screen so that they look as if they are where
they should be.

For example, type in the following short
program and RUN it. This is how NOT to
make a title screen for your program. The
words are all over the place: none are co-
ordinated with any other words, and so the
result is a display which looks a mess. Later on,
you'll see how to sort this out:

10 PRINT "here is a new game caled input"
20 PRINT AT 5,17; "()1984"
30 PRINT AT 12,13;" ❑ by

MarshallCavendish"
40 PRINT AT 18,25;"any key"
50 PAUSE 100
60 CLS: STOP

10 PRINT TAB(27)"MARSHALLCAVENDISH"
TAB (99)" PRESENTS ❑ "

20 PRINT "gg gg"TAB(10)".a INPUT"
30 PRINT" gg gg COPYRIGHT(C)

❑ 1 09E18D4"
40 FOR Z=1 TO 2000:NEXT Z:

PRINT "0"

5 CLS
10 PRINTTAB(20,20)"INPut BY

marSHALLcaVENDISH":PRINT"(c)1984"
20 FORT= 1 TO 2000: N EXT: C LS

10 CLS4
20 PRINT@40,"INPUT"
30 PRINT@136,"copyright

marshallcavendish";
40 PR I NT5228," PR ESENTS";
50 FOR T=1 TO 2000: NEXT:CLS

You can see how unimpressive this display is.
There are several things which ought to be
improved.

Firstly, capitals could be used to good
effect: the Spectrum version uses almost ent-
irely lower case letters, even for the first word
of the display, and for the name of the game.
Capitals can be used to stress important words,
or even for all the words, in order to give the
display a more professional appearance.

Secondly, the screen should always be
cleared before PRI NTing a new message. Other-
wise, as with the program above, the remain-
der of anything already on the screen stays in
sight, making the display untidy.

There is no space in between the two words
Marshall and Cavendish. There should be,
and it looks especially untidy with the words
PRINTed as they are now—with 'Cavendish'
overflowing onto the next line. See below to
find out how you can position your PRI NTs
correctly.

The program does not wait for you to press
a key before continuing, so that you have not
really got enough time to read the screen
properly before it is wiped off. This should not
happen, and there ought to be a line of text
telling you what to do when you want to
continue.

5B
You can work out where you want to PRINT
things on the screen quite easily, from the
dimensions of your computer's screen, and the
number of characters in the words.

For example, suppose your computer has a
screen with 22 lines of 32 characters, and you
want to PRINT a phrase 10 characters long in
the middle of a line one line from the top of the
screen. When you work out the length of your
phrase, don't forget to include all the spaces
between words.

To work out the horizontal coordinate of
the start position of your phrase, subtract the
length of the phrase (here 10) from the total
number of characters in the line (here 32), and
divide the result by 2. You divide the result by
two so that you get an equal number of spaces
either side of the PRINTed phrase.

In this example, the answer is 11. Because 0
is counted as a number, the first character
space is numbered 0. So subtract one from the
answer above, 11, to get the horizontal PRINT
AT position (or the PRINT TAB position).

Sometimes, you may wish to PRINT some-
thing only about two or three characters in
from the left hand side of the screen. In this
case, it is probably easier to include that
number of spaces inside the PRINT statement,
than to use a PRINT TAB or AT statement. But
don't do this if you need to use lots of spaces, as
it tends to be very wasteful of memory.

You can work out the vertical position in the
same way as you did the horizontal: if you want

the phrase in the middle line of the screen,
work out how many lines the message will
cover. Subtract this number from the total
number of lines in the screen, and divide the
answer by two. As before, subtract one from
this (to compensate for the fact that the
computer counts 0 as a number) and the result
is the line number at which you want to PRINT.

If you want to PRINT at a position other than
the middle of the screen, you can either
estimate what you think the coordinates are or
you can use graph paper and work out the
exact numbers.

Spectrum owners should remember that the
Spectrum's PRINT AT command works slightly
differently to other computers'. The difference
is that the Spectrum uses the first number after
the PRINT AT command as the vertical y
coordinate, and the second one as the horiz-
ontal x coordinate. When PLOTting, though,
the x coordinate comes first, as is more usual.

With both computers, the position 0,0 is at
the top left-hand corner when PR I NTing, but at
the bottom left-hand corner when PLOTting
and DRAWing.

ECK
Commodore BASIC has no PRINT AT com-
mand, but lets you move the cursor position so
that the next PRINT position comes where you
want it to.

This means that you do not have to work
out the numbers to go after a PRINT AT
statement—you just include however many
cursor ups/downs/lefts/rights in your PRINT
statements as you want.

If you are trying to position the PRINT
statement so that it appears in the middle of the
line, follow this simple procedure: subtract the
length of the statement from 40 for the 64, or
22 for the Vic (there are 40 characters in a line
on the 64, and 22 in a line on the Vic) and
divide the answer by two. The number you
end up with is the number of spaces there
should be either side of the PRINTed statement
on your screen.

You simply put this number of cursor rights
at the beginning of your PRINT statement, and
the word or words will appear in the correct
position in the line.

The different symbols for cursor up, down
or whatever, can be very confusing. So have a
look at pages 420 and 421 for more inform-
ation on what the symbols look like and what
they do. The Commodore does have a more
limited alternative: you can use PRINT SPC or
PRINT TAB. Both of these commands refer
solely to the horizontal position of the PRINT
statement, although by using numbers larger
than 40 after them you can get limited vertical
control as well.

The more common, PRINT TAB, is followed
by a number between 0 and 255. It moves the
cursor to the right. The number after the
command dictates how many character
squares to the right the cursor moves. In fact,
the computer counts every PRINT TAB from the
beginning of the line, rather than from the
current cursor position.

PRINT SPC is very similar. The only dif-
ference, in fact, is that PRINT SPC counts its
`cursor rights' from the current cursor
position.

If you want to position the PRINTed words
so that they are in the centre of the screen, as
before, you follow the same set of calculations
and use the resulting number as the number in
the brackets after the PRINT TAB or SPC.

You might expect these two types of PRINT
statements, especially the PRINT SPC, to PRINT
the relevant number of spaces, but in fact this
is not the case: they just move the cursor.

As with many commands on the Commo-
dore, you can achieve the same effects with
certain POKE commands. These two POKEs
move the cursor to the specified position:

POKE 781, (desired horizontal position)
POKE 782, (desired vertical position)

If you use these two POKEs to move the cursor,
you should place this command in front of
every PRINT statement which uses them:

SYS 65520

Following this call, PRINTing starts at
positions set by the POKEs. As there are 25 lines
in the Commodore's screen, POKEing the
second of these POKEs with a number greater
than 25 causes the computer to start at the top
of the screen once it is at 25, and count down
again. The same happens if you POKE the first
number with a value greater than 40.

MI 'HI
The number after the PRINT @ command, as
you probably know, refers to a character
square on the computer's text screen. As there
are only 512 squares on the screen, this
number cannot be more than 511, or an error
message will appear.

You can work out the number of the
character square at which you want to start
PRINTing quite simply. The first thing to do is
to decide which line you want to PRINT @
(remember to count from Line 0). Then
multiply this number by 32, the number of
characters in a line.

Then add a number between 0 and 31 to
this to find the number of the square you want.

If you want to PRINT a word (or words) so
that the statement is exactly in the centre of the

line, first count how many character spaces the
statement will take up. Subtract this length
from 32, and divide the number by two (so that
the remaining space on the line will be split
evenly between the two sides of the line) and
add the answer to the number of the first space
in the line. You'll have to round up or down
any halves. The number you have left is the
number of the first space that you will use in
the PRINT @ statement.

Try to work out the PRINT @ numbers for a
variety of screen positions and a variety of
words of different lengths. You can check your
answers by PRINTing @ them, and seeing if the
words that appear are where you want them.

You might like to start PRINTing at a certain
fraction of the line: say, half or one third of the
way through the line.

This is very easy: divide 32 by the relevant
number (2 for a half, 3 for a third, ...) and add
this to the number of the first space in the line,
just as before.

Wherever you want to PRINT @ a position
which is not exactly half way through a line,
but is at some obscure position, you just have
to guess roughly what the number is. Just
experiment until the result looks right.

You can use a grid like the one in the user
manual, and actually plan your PRINTing on
that: then all you need to do is to read off the
PRINT @ numbers from the scales along each
side. The trouble with this is that it takes a long
time and so is not really worth doing unless
you have quite a few different statements to
work out.

A BETTER DISPLAY
The following programs give you a better title
page, although they do not need any more
complex programming techniques. They put
right all that was wrong in the last program,
and add colour and motion to try to make the
screen a little more interesting. You should
note especially the use of PRINT AT and PRINT
TAB (or, for the Commodore, cursor control
characters), as these are needed for almost any
PRINTing that you will do.

5 LET X =1
10 BORDER 1: PAPER 1: INK 7: CLS
20 PRINT INVERSE 1;AT 3,3;" ❑ MARSHALL

CAVENDISH LTD E"
30 PRINT INVERSE 1;AT 5,10;

" 0 PRESENTS: 0 "
40 PAUSE 50
50 PRINT PAPER 6; INK 1;AT 10,10;

"DIONDPEUETE"
60 PRINT PAPER 6; INK 2; FLASH 1;

AT 9,9;"rnnnnn
iinni";AT11,9;"El ❑❑❑
❑❑❑❑❑❑❑❑ J"

70 PRINT PAPER 6; INK 2; FLASH 1;AT
10,9;" 117;AT 10,21;" Ell"

80 PRINT PAPER 5; INK 0;AT 15,2;
"COPYRIGHT AUDIO, VISUAL, 1984"

90 PRINT """ ❑ ❑ 0 PRESS ANY KEY TO
CONTINUE"

100 PAUSE 0
110 CLS
120 PRINT "0 ❑ ❑ ❑ ❑ INPUT PART 1

INDEX"
130 PRINT
140 FOR X =1 TO 10
150 READ a$
155 READ b$

160 PRINT 'TAB 3;a$;TAB 25;b$
170 NEXT X
180 DATA "Animation","26-32"," Basic

programming","2-7"," BR EAK,
Dragon","7","Cassettes","25",
"Cassette recorders","24",
"CHR$, use of","26-27",
"CLEAR","10-27","CLOAD,
Dragon", "14","CLS, explanation
of","27","CODE , Spectrum","8"

The first thing to notice about this Spectrum
program is that it changes the colour of the
screen and BORDER, and clears the screen. It
does not matter what colours you choose for
the screen, except that if you can avoid the
normal white' BORDER and PAPER with black
ink it usually looks better, simply because it is
different.

You should make the display as easy to read
as possible, which means having an INK colour
which stands out from the PAPER. Also, some
colour combinations are considerably more
pleasant than others.

POSITIONING
Lines 20 and 30 PRINT the words
`MARSHALL CAVENDISH PRESENTS'.
But the words are not all on the same line; the
name of the company, Marshall Cavendish, is
on the top line with the word 'presents' two
lines beneath. This makes the text on the
screen look much clearer.

The program uses PRINT AT to position
these words in the centre of the screen. Try to
work out what the PRINT AT numbers should
be, using the calculations given above. They
should be the same as those in the program.

You can see the advantages of putting these
words in their correct positions when you RUN
the program: unlike the previous program, the
words look as if they are in the right place.

You could have used PRINT TAB to PRINT
the same words by changing Line 30 to:

30 PRINT 'TAB 10; INVERSE 1;
"PRESENTS: "

There is an apostrophe before the TAB 10 so
that the Spectrum PRINTs a clear line before
PRINTing 'PRESENTS'. You can also get the
Spectrum to PRINT a blank line just by
entering the command PRINT (with a suitable
line number) on its own.

The program PAUSES for one second after
this, to give more emphasis to the next item to
be PRINTed (the name, INPUT).

Lines 50, 60, and 70 PRINT "INPUT" with
the FLASHing red and yellow border. The
border is made up of ROM graphics, as you
can see from the program, which FLASH red
and yellow.

A first attempt

These Lines use a series of PRINT AT
commands, and show how flexible this com-
mand is. You don't need to repeat the PRINT so
long as you don't put a semi-colon in the Line in
between the items you want to PRINT.

The various ATs are separated by semi-
colons. They could equally well be separated
by commas, except that a comma would cause
half a line of spaces to be PRINTed, which
might blank out what was on the screen
already, and so it is a good idea always to use
semi-colons: unless, of course, you want to
blank out what was on the screen at that
position.

Working out the PRINT AT coordinates for
the FLASHing border cannot be done using the
calculations above, since the border is not at
the centre of the lines. To work out the
positions, then, you must take the coordinates
from the word inside the border, and try to add
or subtract something to get the numbers for
the border.

For example, take the top line of the border.
You know that the PRINT AT coordinates of
`INPUT' are 10,10. You also know that the
top line of the border is one line higher than
this. So you subtract one from the first number
(10) to give your first coordinate, 9.

You want the border to start one space
before the word, so you also subtract one from
the second number of the 'INPUT' coordi-
nates, to give 8.

Try to work out the numbers for the other
parts of the border, and check your answers
against the coordinates given in the program
above.

The program finishes the screen display by
PRINTing a copyright message, to remind users
that it is illegal to copy programs, and telling
them to press any key to continue.

In fact when you do press a key, instead of a
game starting, or you being presented with
instructions for a game, as might happen in a
game program, you are presented with a
section of the INPUT part one index.

What happens when you press a key is that

The finished display

the Spectrum clears the screen, and PRINTs the
message 'INPUT PART 1 INDEX' at the top
of the screen. As you can see if you look at the
program, there is no PRINT AT or TAB com-
mand, so why is the message in the middle of
the line?

Since only five free character squares are
needed to place the message in the middle of
the line, spaces are put at the start of the PRINT
statement (inside the inverted commas) instead
of using a PRINT AT command. After this, the
computer PRINTs a line of blank spaces: PRINT
on its own does this (Line 130).

The FOR ... NEXT loop which follows reads
two string variables from the DATA in line 180.
You might think it strange that the page
numbers are stored in a string variable form.
The reason for this is that some of the entries
have more than one number: Animation, for
example, is on pages 26-32. You could store
`26-32' in a numeric variable, but when the
computer PRINTs it, it would treat it as a
subtraction, and PRINT-6! That would really
confuse any user!

On top of this, some of the entries have page
numbers separated by a comma—and as you
know, a comma is the punctuation mark used
for separating different items in a list of DATA,
so the two page numbers, although they refer
to the same entry, would be treated as if they
belonged to two entries.

You might also think that it would be clearer
to store the DATA for the entries in a separate
Line to the one used for storing the page
numbers. The RESTORE command would en-
able the program to switch between the two
separate Lines, and all would be fine.
Wouldn't it?

In fact the answer is no, because the
RESTORE command sends the computer to the
beginning of the relevant Line of DATA, and so
the computer would PRINT out the same entry
and the same page number every time, which is
all very well if you want to know where
Animation is, but not otherwise!

Of course, one way round this is to use a

separate Line for each item of DATA, but that is
very inefficient.

Line 160 controls the PRINTing of the DATA,
and sets the PRINT position. The PRINT TAB
command is used here to align the entries and
page numbers so that they all start in the same
column, and look neat.

PRINTing an index is an ideal use for PRINT
TAB, as the row is automatically changed by
the computer with every different PRINT state-
ment, and the TAB sets just the position along
the line. The entries are PRINTed at the third
column in from the left, which is set by TAB3.
The numbers are then PRINTed in the same
line, but starting 25 columns in.

Using PRINT TAB both must be PRINTed
with one PRINT command: if you look at the
program, Line 160 has just one PRINT, and
separates each part with semi-colons. If a colon
was used followed by another PRINT com-
mand, the numbers would be PRINTed one line
below their respective entries, which would be
rather confusing.

If you change the TAB 25 to TAB (25 + 32) or
TAB 57, then there would be no difference.
This is because the TAB command moves the
cursor to the specified column, and if the
number after TAB is more than 32 it is divided
by 32 to leave the remainder. It always stays on
the same line unless backspacing is needed.

Backspacing is only needed if you try to
PRINT TAB (a number less than the column
where the cursor is). When you do this, the
Spectrum moves on to the next line of the
screen, and PRINTs there.

Try changing the TAB number to get a
rough idea of what various numbers actually
mean in terms of screen positions. Remember
that there are 32 characters in each line.

PRINT AT and PRINT TAB do very similar
functions, but in different circumstances.
Whenever you want to PRINT a list of words or
numbers on the screen (such as an index or a
high score table) you should use PRINT TAB, as
this is more efficient: you do not need to repeat
it, or to specify the row. PRINT AT, on the other
hand, is very useful for PRINTing a small
number of items, or if you want to change the
height of an item on the screen.

Creating an attractive display is a piece of cake
on the Commodore 64 and Vic 20. There's a
vast number of ROM graphics symbols and
easily embedded cursor and colour control
symbols which can be included within parts of
any PRINT statement. Take a look at this
version of the earlier opening page program:

5 POKE 53280,5: POKE 53281,0

10 PRINT " ❑ gg gg M"TAB(8)

20 PRINT TAB(8)"a ❑ MARSHALL!
CAVENDISH LTD Ill"

30 PRINT TABoorgiggggigggggigg
1g 	!II

35 PRINT TAB(1 Ora DCOPYRIGIT111 —
 (C)❑ 1984 ❑ "

40 PRINT TAB(6)"gg gg g PRESS SPACE
BAR TO CONTINUE"

50 POKE 198,0
60 POKE 646,RND(1)*6 + 2
70 IF PEEK(197) = 60 THEN PRINT

"0 ❑ ": POKE 53280,14: POKE
53281,6:END

80 T= RND(1)*7:PRINT
"IgiggAggigagggggigigg"
TAB(13+T)"EIBEIBEIE10"

90 PRINT TAB(13+T)"1:01NPUTEI"
100 PRINT TAB(13+T)

"EIBEIEIBBEI"
110 pRINT "giggggaggg"

TAB(11 +RND(1)*2)" ❑ P ❑ R ❑ E ❑
S ❑ E ❑ N ❑ T ❑ S ❑ ":GOTO 60

['3
5 POKE 36879,11: POKE36865,150:

POKE 36878,15
10 PRINT "OM a MARSHALL CAVENDISH

LTD"
20 PRINT "pigggaggggEggggggg

gggg ❑ COPYRIGHT 1984"
30 PRINT TAB(5)"gg ggggg

ggg PRESS ANY KEY"
40 PRINT TAB(6)" IL TO CONTINUE":

POKE 198,0
50 FOR Z=150 TO 38 STEP — 1:

POKE 36865,Z:GOSUB 100
60 POKE 36876,255 — Z:POKE 36877,

100 + Z:NEXT: POKE 36877,0: POKE
36876,0

70 POKE 646,RND(1)*6 + 2:GOSUB 100
80 IF PEEK(197)< >64 THEN PRINT

"ID M":POKE 36879,27:END
90 GOTO 70
100 T= RND(1)*7:PRINT 	gg gg

ggggggg"TABo+ -0
"EIBBBEIBM"

110 PRINT TAB(4 +T)"[OINPUTal"
120 PRINT

TAB(4+T)"EIBBEIBBEI"
130 PRINT "I§1 gg gg gg"TAB

(2+ RND(1)*2)" ❑ PO REI ELI
S ❑ E ❑ NEIL'S ❑ ": RETUR N

RUN the program to display a simply construc-
ted but nevertheless eye-catching display
which makes good Use of the features of the
Commodore graphic set.

The first line is the familiar set of POKES to
change border and screen colours. Line 10
clears the screen and PRINTs, in yellow, one of
the more useful ROM graphics in an applic-
ation such as this: the thin base line obtained
by pressing the @ and KE keys simulta-
neously. Twenty-four of these are required,
adding a thin continuous line at the top of the
display MARSHALL CAVENDISH created
by the PRINT statement in the line below.

The same technique is used in Line 30 to
provide a 'topping' for the copyright message
in Line 35. Twenty base lines are needed here.

Line 50 contains a POKE which clears the
keyboard (input) buffer. This is a simple error
avoidance technique which stops the program
careering onwards if a rogue keypress had been
lurking in the buffer when a specific piece of
information is awaited.

Location 646 used in the POKE in the next
line regulates the current character colour. A
random value is chosen but within the range
which excludes black and white (thus the + 2,
so you don't get the colour value 0 or 1). Nor
does it exceed 8 because too many colour
switches in the flashing display routine which
follows would be self-defeating.

Line 70 waits for the C key to be pressed in
response to the main display prompt, clearing
and then resetting the screen before terminat-
ing the program.

Until the C keypress, the program loops
round an interesting variation on a static
display. Look at how the TAB value is adjusted
by the ever-changing value of T. This gives a
shifting effect to the complete INPUT mes-
sage which is formed by the PRINT statement of
Lines 80, 90 and 100.

Finally, in Line 110, is a different version of
the variable TAB—an arrangement where the
RND element forms part of the argument.

10 MODE1
20 VDU19,3,10,0,0,0
30 COLOUR2
40 PRINTTAB(9,2)"MARSHALL CAVENDISH

LTD"
50 PRINTTAB(15,5)"PRESENTS:"
60 COLOUR3
70 FOR T=0 TO 3
80 PRINTTAB(15,11 +T"2)

"Ifl 	UEIT"
90 NEXT
100 COLOUR1
110 PRINTTAB(11,24)"COPYRIGHT (c)1984"
120 PRINTTAB(7,28)"PRESS ANY KEY TO

CONTINUE"
130 MOVE464,688:DRAW464,432:

DRAW784,432:DRAW 784,688:
DRAW 464,688

RUN this program and notice the vastly impro-
ved title page. The use of colour is accentuated
by the use of repetition and by flashing parts of
the display. The program starts by selecting a
mode that supports four colours, as well as
graphics (Line 10). Line 20 changes one of the
four colours, colour 3, to flashing colour 10,
green/magenta. Notice that you could have
selected MODE 2 at Line 10 which supports all
the colours, but that the size and shape of the
letters would be rather difficult to read.

The first two lines of the display are
positioned and printed (Lines 40 and 50) in
yellow—selected at Line 30. Line 60 then
selects the redefined colour, COLOUR3-
flashing green/magenta—in which to print the
next three lines. These are positioned by the
FOR ... NEXT loop between Lines 70 and 90.
On the first pass round this loop, Line 80
PRINTs the word 'INPUT' at position X=15
and Y =11. On subsequent passes, the word is
PRINTed two lines down the screen, giving
altogether four printings with two lines be-
tween each. To PRINT each line in a different
colour, you could put in a short routine
between Lines 80 and 90.

The last two lines are positioned and
PRINTed (Lines 110 and 120) in red—Line
100. So far all positions have been selected by
PRINT TAB statements. To decide what values
they should have, you need to know how many
characters are printed across and down the
screen in the mode in which you are working.
In MODE 1 this is 40 across and 32 down. So if
you want to print INPUT at the centre of the
screen, you would key PRINT TAB (17,15).
These positions are easily reckoned on the
Text Planning Sheet included at the back of
the User Manual.

The finishing touch to this title page is
added by Line 130, which DRAWS a rectangle
around the four sides of the word 'INPUT'.
You will also find it easy to reckon the position
of each of the corners of the rectangle by
referring to the Graphics Planning Sheets at
the back of the User Manual.

The PRINT TAB statement is useful when
you want to place text at a position on the
screen, but when you wish to leave spaces to
form a pleasant display you need a simpler
technique. Enter and RUN the next section of
program:

140 G=GET
150 CLS
160 PRINTTAB(11,2)"INPUT PART 1 INDEX"
170 PRINT"
180 FOR T = 1 TO 7
190 READ A$,B$
200 PR I NT"TAB (5)A$TAB (30) B$
210 NEXT
220 DATA Animation,26 — 32,Basic

Programming,2 — 7,"CHR$, use
of ",26 — 27,CLEAR,"10,27",
"C LOA D, Dragon",14,"CLS,
explanation of",27,"CODE,
Spectrum",8

The program sets up the title page and stops,
but don't be alarmed; there is more. Line 140
causes the computer to stop and wait. If you
obey the instruction PRINTed by Line 120, the
program will continue. The screen is cleared
(Line 150) and a title is PRINTed at the top
centre (Line 160) of the screen. So that the title
stands out and is separated from the rest of the
display, Line 170 PRINTS three blank lines. To
leave a single line space, you would just use
PRINT on its own. Notice that you cannot use a

double-quotation mark to leave the spaces, or
you will get an error.

The rest of the program READS in two
columns of data (Line 190) from Line 220.
Each time round the FOR ... NEXT loop
starting at Line 180, two pieces of data are
read, a two line space is left (by PRINT') and
the data is PRINTed. Notice that only one
coordinate is used in each TAB statement. In
the absence of the second coordinate, the
micro takes this to be the X-coordinate, so the
first piece of data is PRINTed five units along
the X-axis and the second is PRINTed 30 units,
also from the left-hand margin.

The DATA statement, too, at Line 220 has
some important punctuations. Normally, each
piece of data is separated by a comma (,). On
this line, however, some of the data includes a
comma, so to PRINT the data as they are,
double quotation marks are used. These are
also necessary when you wish to PRINT a
BASIC keyword, such as CHR$.

!HI
Type in the following program and you'll see
how PRINT@ can be used to produce a pro-
perly formatted title page.

10 CLS3:B$ = CHR$(128)
20 PR I NT@68, B$,"ma rsh a I I"; B$;

"cavendish"; BS; " ltd"; B$;
30 PRI NT@138," PR ESENTS:";
40 PRINT@358, B$;" copyright";

BS; B$; B$;"1984"; B$;
50 PRINT@232,CHR$(190);STRING$

(11,CHR$(188));CHR$(189);
60 PRINT@264,CHR$(234);

"0 ID N ❑ PD U DTD";CHR$(229);
70 PRINT@296,CHR$(155);STR1NG$

(11,CHR$(147));CHR$(151);
80 PRINT@450," ❑ PRESS ANY KEY TO

CONTINUED";
90 J = 1 —J:SCREENO,J
100 FORK= 1T0200: NEXT
110 IF 1NKEY$ < >"" THEN 130
120 GOTO 50
130 CLS4
140 PRINT@7,"input PART 1 INDEX";
150 FOR X = 3 TO 12
160 READ D$,E$
170 PRINT@32 .X + 1,D$;:PRINT@32*X

+ 25,LEFTV" ❑ " + + " ❑
❑ ❑ ",7);

180 NEXT X
190 DATA AN I MATION,26 — 32, BASIC

PR OG RAM MI NG,2 — 7," BR EAK ,dragon",
7,CASSETTES,25,CASSETTE
RECORDERS,24,"CHR$,use of",
26 — 27,CLEAR,"10,27","CLOAD
,dragon",14,"CLS ,explanation
of",27,"CODE ,spectrum",8

200 GOTO 200

The programs starts by changing the screen
colour to blue in Line 10—see page 374 for a
full explanation of how you can change the
screen colour using CLS. The remainder of the
line sets B$ equal to a black square.

Lines 20 and 40 print out the words in
reverse characters, using B$ as a space. Re-
member that the reverse characters on the
Dragon and Tandy screen appear as lower case
characters on program listings.

Line 30 is similar except that the word
PRESENTS is less important and so is dis-
played as normal upper case characters.

In the centre of the screen is the title
INPUT surrounded by coloured block
graphics. The graphics and title are displayed
by Lines 50 to 70.

The range of block graphics that are avail-
able to you are shown in the user manual. They
are made up of black and green areas, but the
green parts can be changed to yellow, blue,
red, buff, cyan, magenta or orange by adding a
multiple of 16 to any of the block graphic
character codes.

Parts of the screen display are coloured
green. These areas are where the screen
background colour shows through. It's very
easy to change the green screen colour to
orange and produce a flashing screen display.
Line 90 uses the SCREEN command to swap
between the green and orange screen in a very
similar fashion to the way you switched be-
tween colour sets when using high resolution
graphics. By specifying SCREEN0,1 the screen
colour can be switched to orange, and by
specifying SCREEN 0,0 you can switch the
screen back to green again. Each time the
program executes the loop the screen back-
ground colour is changed.

So that you can see the colours alternating a
short pause is inserted by Line 100. The loop
is completed by Line 120.

If any key is pressed while the title page is
being displayed Line 110 causes the program
to go on to the next section.

The screen colour is changed to red by Line
130. Line 170 and the FOR ... NEXT loop in
Lines 150 and 180 do the work of displaying
the data read from Line 190. Each time the
loop is executed, a new line is used for the
subject and page references. The LEFT$ in the
second part of the Line makes sure that the
page numbers always appear in the same size
panel. The display will look a lot neater that
way.

One last nice touch is the loop in Line 200.
This may seem to be absolutely pointless, but
its role is quite important. Without Line 200
the program ends causing the message OK to
appear against a green screen, ruining your red
background.

Why bother with the tedious
translation of assembly language
into machine code hex, when that's
exactly the sort of mechanical
process your computer is good at?

The assembler for the Dragon and Tandy is a
little longer than the one for the Spectrum. But
this is because it includes an editor.

Although there are a good deal fewer
instructions for the Dragon's 6809 than for the
Spectrum's Z80 chip, the Dragon's assembler
has to make three passes instead of the
Spectrum's two in case there are any 16-bit
instructions.

In spite of the three passes, the Dragon and
Tandy assembler is still almost three times
faster than the Spectrum's because it uses
INSTR to search for the opcodes. But you will
still have to wait a bit if you are assembling a
long program.

NC !HI
On the Tandy change the POKE in Line 10 to
POKE 146,1. This line may give an FC error
when it is first RUN, but don't worry, just RUN
it again and it should be fine.

THE ASSEMBLER
10 PMODEO:PCLEAR1:CLEAR3000:CLS:

PRI NTa233,"initializing": R$ = CH R$ (13):
POKE144,1

20 DIMSK$(1),K1(94),K2(94),T$(200),
RR(1 00),Z$(100)

30 FORCC = 1T094:READK$,K1(CC),K2(CC):
C = CC/49:SK$(C) = SK$(C) + RIGHTS
(STR$(CC),2) + K$:NEXT

40 DATA ADCA,185,1,ADDA,187,1,ADDD,
243,2,ASL,120,3,CLR,127,3,CM PA,
177,1,CM PD,4275,2,CM PY,4284,
2, BCC,36,4, BCS,37,4, BEQ,39,4

50 DATA BHS,36,4,BL0,37,4,BM1,43,4,
BN E,38,4,B PL,42,4,BRA,32,4,LBRA,
22,5,BSR,141,4,LBSR,23,5,CM PX,
188,2,CM PU,4531,2,CM PS,4540,2,
DEC,122,3

60 DATA I N C,124,3,J SR,189,3, LDA,
182,1,LDB,246,1,LDD,252,2,LDS,
4350,3, LDU,254,3,LDX,190,3, LDY,
4286,3, LSL,120,3,LSR,116,3

70 DATA PS H S,52,1, PSH U,54,1,PULS,53,
1, PULU,55,1,ROL,121,3,ROR,118,3,
RTS,57„STA,183,3,STB,247,3,STD,
253,3,STS,4351,3,STU,255,3

80 DATA STX,191,3,STY,4287,3,SU BA,
176,1,SUBD,179,1,ANDA,180,1,ABX,
58„ANDCC,76,1,ASR,119,3,RT1,59„

■ AUTOMATIC TRANSLATION
OF ASSEMBLY LANGUAGE

INTO MACHINE CODE
■ CALCULATING JUMPS

AND BRANCHES

■ WORKING OUT
POSTBYTES

■ COPING WITH LABELS
■ POKEING THE HEX

INTO MEMORY

SBCA,178,1,NOP,18„NEG,112,3
90 DATA BITA,181,1,BGE,44,4,BGT,46,

4,BHI,34,4,BLE,47,4,BLS,35,4,BLT,
45,4,BRN,33,4,BVC,40,4,BVS,41,4,
EXG,30,1,TFR,31,1

100 DATA COM,115,3,CWAI,108,1,DAA,
25„ORA,186,1,TST,125,3,LEAS,66,3,
LEAU,67,3,LEAX,64,3,LEAY,65,3,MUL,
61„EORA,184,1,OR 8,250,1

110 DATA ORCC,74,1,SEX,29„SWI,63„
SWI2,4159„SW13,4415„SYNC,19„
EQU,-1,2,FCB,-2,1,FDB,-3,2,RMB,
— 4„JMP,126,3

120 D1MX$(13),V(14),KK(13),Y$(13)
130 FORC = OT012:READX$(C),V(C),KK(C),

Y$(C):NEXT
140 DATA PCR,253,7„PC,253,8,D,—

243,1,X, — ,242,1,Y,X,159„U,Y,191„
S,U,223„PC

150 DATA S,255,,, + +,241,1„+,240,1,
A,A,246,1,B,B,245,1,CC,D,251,1,DP

160 FORJ = OT09:READPU$(J),PU(J):NEXT
170 DATA PC,128,U,64,S,64,Y,32,X,16,

DP,8,D,6,B,4,A,2,CC,1
180 CLS:PRINT@43,"assembler"RR

TAB(8)"G = GET FROM TAPE"RRTAB
(8)"S = SAVE ON TAPE"RRTAB(8)
"A = ASSEMBLE"

190 PR1NT@296,"E= EDIT LINE"RR
TAB(8)"D = DELETE LINE"RRTAB(8)
"L= LIST ON SCREEN"

200 A$ = 1NKEY$:IFA$=""THEN200
210 JJ = INSTR("GSEDLA",A$)
220 IFJJ=OTHENPRINT"<"Ar > not

understood": FORJ =1T01000: NEXT:
GOT0180

230 CLS:ON JJ GOSUB1420,1450,1490,
1710,1760,280

240 PRINT@1,"PRESS enter TO
CONTINUE, ANY ❑ ❑ ❑ ❑ ❑ 0THER
KEY FOR MAIN MENU"

250 A$ = 1NKEY$:IFA$=""THEN250
260 1FA$ < > R$THEN180
270 ON JJ GOSUB1420,1450,1700,1710,

1850,290:GOT0240
280 K = 0:K9 = 0:P0 = 0
290 PS=0
300 PS= PS +1:1FPS<4THENK= KO:P= PO:

PRINT@1,"START OF PASS"PS:GOTO
330

310 PO= P:RETURN

320 IFPS = 3 THENPRINT" ❑ postbyte error"
330 GOSUB1320
340 GOSUB1260:0P$ = C$:IFLEFT$(OP$,1)

=" . "ANDPS=3THENPRINTOP$
350 IFLEFT$(0P$,1)=""THEN330
360 1FOP$="END"ANDPS=3THENPRINT:

PRINT" ❑ ❑ ❑ END LAST ADDR";
P-1

370 1FOP$="END"THEN300
380 1FOP$ < >"ORG"THEN420
390 GOSUB1260:S = 0:IFLEFT$(C$,1) =

""THENS= P:C$ = MID$(C$,2)
400 P=VAL(C$)+S:1FPS=3THENPRINT:

PRINT" ❑ ❑ ❑ ❑ ❑ ORG";P
410 GOT0330
420 IFP=OANDPS=3THENPRINT"Elyou

forgot org": P = 35000
430 CC=0:DF =0
440 C=INSTR(SK$(CC),OP$):1FC< >0

THENGOSUB530:GOT0570
450 C= INSTR(SK$(CC),LEFT$(OP$,3)):

IFC < > OANDRIGHT$(OP$,1) < "C"AND
M1D$(SK$(CC),C + 3,1) < "A"THENGOSUB
530:GOT0540

460 IFC< >OANDRIGHT$(0P$,1)="B"
GOSUB530:GOT0560

470 C= INSTR(SK$(CC),RIGHT$(OP$,3)):
IFC< >OANDLEFT$(0P$,1)="L"GOSUB
530:GOT0550

480 CC= CC +1:IFCC<2THEN440
490 1FPS=3THENPRINTOP$
500 GOSUB1350:Q3=Q2:RR(Q2)= P:1FC$=

""THEN340
510 IFPS= 3THENPRINT" ❑ this line not

recognized"
520 GOT0330
530 C=VAL(M1D$(SK$(CC),C-2,2)):

RETURN
540 OP= K1(C) —32 +16 . (RIGHT$(0P$,1) =

"A"):K2=0:GOT0580
550 OP= K1(C) + 4096:K2 =5:GOT0580
560 OP= K1(C) + 64:K2 =1:GOT0580
570 OP= K1(C):K2= K2(C)
580 IFPS=3THENBY= P/256:GOSUB1240:

BY= P— 32768:GOSUB1240:PRINT" ❑ "
OP$;

590 IFOP> —1THEN740
600 GOSUB1260:AD$= C$:1FPS= 3 THEN

PRINT" ❑ "LEFT$(AD$,10);
610 ON — OPEI GOT0620,630,660,730
620 GOSUB1860:IFNU = OTHENRR(Q3) = R:

G0T0330 ELSE1050
630 IFPS = 3THENPRINTTAB(20);
640 GOSUB690:BY=255ANDR:GOSUB1230
650 IFB$ =AD$THEN330ELSE640
660 IFPS=3THENPRINTTAB(20);
670 GOSUB690:BY=INT(R/256):GOSUB

1230: BY = R — 256*BY:GOSUB1230
680 IFB$ =AD$THEN330ELSE670
690 NN = INSTR(AD$,","):IFNN = OTHEN

B$ = AD$:GOT0710
700 B$ = LEFT$(AD$,NN —1):AD$= MID$

(AD$,NN +1)
710 1FLEFT$(B$,1)="$"THENR = VAL

("&H" + MID$(B$,2))ELSER = VAL(B$)
720 RETURN
730 GOSUB1860:IFNU=OTHENP=P+ R:

G0T0330 ELSE1050
740 B =239:IFK2 = OTHEN1140
750 GOSUB1260:AD$ = C$:1FPS=3THEN

PRINT" 111"LEFT$ (AD$,9);
760 IFK2 > 3THEN1040
770 IF (K2< >30R(LEFT$(0P$,2)="LD"))

ANDLEFT$(AD$,1)="#"THENAD$=
M1D$(AD$,2):DF = 1:0P = OP — 48:
GOT01040

780 IFRIGHTVAD$,1)="]"THENAD$=
M1DVAD$,2,LEN(AD$)-2):B= B +16

790 IFOP< 520R0P> 55 THEN870
800 K2=1:R= 0:AA$ =AD$
810 NN=INSTR(AA$,","):IFNN=OTHEN

U$ = AA$:GOT0830
820 U$=LEFTVAA$,NN-1):AA$=M1D$

(AA$,NN +1)
830 IF U$=RIGHT$(0P$,1)THEN320
840 NN = —1:FORJ =0T09:1FU$ = PU$(J)

THENNN =J
850 NEXT:IFNN<OTHEN320
860 R=R ❑ ORPU(NN):1FU$=AA$THEN

1140ELSE810
870 K2= 3:C = 1NSTR(AD$,","):IFC= 0

THEN1040
880 IFOP< >30ANDOP< >31THEN950
890 NN=1NSTR(AD$,","):U$=LEFT$

(AD$,NN — 1):GOSUB930:N1 = H —1:
IFH=OTHEN320

900 U$=M1D$(AD$,NN+1):GOSUB930:
N2 = H — 1:IFH = OTHEN320

910 IF(8ANDN1)< > (8ANDN2)THEN320
920 R 16*N1 + N2:K2 =1:GOT01140
930 FORJ =1T012:1FY$(J) = U$THENH = J
940 NEXT:RETURN
950 C2 = C+1:FORJ = OT012:L= LEN

(X$(J)):IF MIDVAD$,C2,L)< > X$(J)
THEN980

960 IF (B ❑ 0RV(J))AND239<239THEN320
970 C2= C2 + L:B = BOANDV(J):IFKK(J)

THENK2= KK(J) —1
980 IFJ = 9THENJ2= C2:C2= C2 + (C2-1)*

(K2<6)
990 NEXT
1000 IF(15ANDB)=15THENB= B-6

1010 IFPS =3ANDJ2 < =LEN(AD$)ANDK2
< >7THENPRINT" indexing error":
G0T0330

1020 1F(K2=0ANDC>2)0R(MID$(AD$ +
",",J2,1) < >",")ANDPS=3THEN
PRINT" address error":G0T0330

1030 AD$=LEFT$(AD$,C-1):1FJ2=C
THENR=0:GOT01060

1040 GOSUB1860:IFNU=OTHEN1060
1050 IFPS = 3THENPRINT" ❑ address not

understood"
1060 IFK2 =7THENK2=3:GOT01080
1070 IFK2 > 3THENR = R — P-2+ (OP>

255)+(B< >239)+(K2>4):

R = R — ((K2 =6)AND(R > —129)AND
(R<128)):K2=K2-3

1080 IFB =239ANDK2= 3THENK2 =2:IFR
< 256ANDDF = OTHENK2 = 1:0P = OP — 32 :
IF(240ANDOP)=80THENOP= OP —80

1090 IFPS=3AND((0P> 31ANDOP<48)OR
OP = 141)AND(R < — 128ORR > 127)THEN
PRINT" El branch out of range";: G0T0330

1100 IFB =255THENB =159:K2=2
1110 IFB < > 239THENOP = OP — 16:IFK2 = 3

THENK2=2:IFABS(R + .5) <128THEN
K2=1:B=B-1:R=255ANDR

1120 IF(15ANDB)=8ANDR=OTHENB=
B — 4:K2 =0

1130 IF(31ANDB)=8AND(R <16ORR > 239)
THENB = (B — 136)0R(31ANDR):K2 = 0

1140 IFPS=3THENPRINTTAB(20);
1150 IFOP= >OTHENBY=OP/256:GOSUB

1220:BY= OP:GOSUB1230
1160 IFB< >239THENBY=B:GOSUB1230
1170 IFK2 = OTHEN330
1180 GOSUB1200:IFK2=2THENBY= R/256:

GOSUB1230
1190 BY= R-256*INT(R/256):GOSUB1230:

GOT0330
1200 IFPS=3THENPRINT" ❑ ";
1210 RETURN
1220 IFINT(BY)=OTHENRETURN

1230 P=P+1:IFPS=3THENPOKEP-1,255
ANDBY

1240 BY= 255ANDBY:IFPS= 3THENPRINT
RIGHT$("0"+ HEX$(BY),2);

1250 RETURN
1260 IFK> N THENC$ = "END":RETURN
1270 K1 = K9 + 1:IFK9 > =LEN(T$(K))THEN

C$ = " ❑ missing mnemonic":RETURN
1280 K9= K1:1FMID$(T$(K),K1,1) = "0"

THEN1270
1290 IFK9 > LEN(T$(K))THENC$ = MID$

(T$(K),K1,K9—K1):RETURN
1300 IFMID$(T$(K),K9,1) < > " D "THEN

K9 = K9 + 1:GOT01290
1310 C$= M1D$(T$(K),K1,K9— K1):

RETURN
1320 IFK9< =LEN(T$(K))ANDPS=3THEN

PRINTRIGHT$(T$(K),LEN(T$(K)) —
K9+1);

1330 K= K +1:K9 = 0:IFPS = 3THENPRINT
1340 RETURN
1350 X$ = ""
1360 1FC$ <"A"ORC$ > ="["THEN138O
1370 X$ = X$ + LEFTVC$,1):C$= MID$

(C$,2):GOT01360
1380 1FC$ < >`"'THENRETURN
1390 FORQ2=1TOVV:1FX$=Z$(Q2)THEN

1410
1400 NEXT:W=W+1:Z$(W)=X$:Q2=W:

RR(W) = 23000
1410 RETURN
1420 CLS:MOTORON:PRINT@161,

"POSITION TAPE,PRESS ANY KEY AND
THEN PRESS PLAY ON TAPE"

1430 U$ = 1NKEY$:IFU$=""THEN1430
1440 OPEN"I",# —1,"ASM":PRINT

"IDI LOADING PROGRAM":INPUT# —1,N:
FORJ=1TON:INPUT# —1,T$(J):NEXT:
CLOSE# —1:RETURN

1450 CLS:MOTORON:PRINT@161,
"POSITION TAPE,PRESS RECORD ON
❑ ❑ CI TAPE THEN PRESS ANY KEY"

1460 U$=INKEY$:1FU$=""THEN1460
1470 OPEN"0",# —1,"ASM":PRINT

" CI SAVING PROGRAM":PRINT# —1,N:
FORJ=1TON:PRINT# —1,T$(J):NEXT:
CLOSE # —1:RETURN

1480 PRINT# —1,N:FORJ=1TON:PRINT
—1,T$(J):NEXT:CLOSE# —1:
RETURN

1490 PRINT" El PLEASE INPUT LINE
NUMBER ❑ ❑ ❑ ❑ ❑ ❑ ❑ (PRESENT
LINES NUMBERED IN TENS)"

1500 INPUTK:CLS
1510 K2=K/10:IFK2> NOTHENK2= N+1:

N=N+1:T$(K2)=`"':PRINT@480,""
1520 IFK2<.1THENK2 = .1
1530 IFK2 = INT(K2)THEN1550
1540 K2 =INT(K2) + 1:FOR K3= N TOK2 —1

STEP — 1:T$(K3 + 1) = T$(K3):NEXT:N =
N +1:T$(K2)= ""

1550 P1 =1478:P0 = P1:P2= 0
1560 PR1NT@448—P2,K;TAB(6)T$(K2):

P9= PO+ LEN(T$(K2))
1565 IFLEN(T$(K2)) + PO >1503THEN

PO = PO — 32:P2= P2 + 32:P1 = P1 —32:
GOT01565

1570 IFP1 < PO THENP1 = PO
1580 IFP1 > P9 THENP1 = P1 —1
1590 P8= PEEK(P1):POKEP1,63ANDP8
1600 P7 = 0:A$=INKEY$:1FA$=""THEN1604
1610 1FA$ = R$ THENPOKEP1,P8:RETURN
1620 1FA$=CHR$(9)THENPOKEP1,P8:

P1 = P1 + 1:GOT01580
1630 1FA$=CHR$(8)THENPOKEP1,P8:

P1 = P1 — 1:GOT01570
1640 1FA$ = CHR$(10)THENA$ = `"':GOT0167
1650 1FA$ = CHR$(94)THENA$ = "0" +

MID$(T$(K2),P1 — PO + 1,1):P7 = —1:
GOT01670

1660 1FA$ < "ID "THEN1600
1670 IFP1 — P0+1 > LEN(T$(K2))THENT$

(K2) = LEFT$(T$(K2),P1 — PO) +A$:
GOT01690

1680 T$(K2) = LEFT$(T$(K2),P1 — PO) + A$
+ RIGHT$(T$(K2),LEN(T$(K2)) —
P1 + PO —1)

1690 P1 = P1— (LEN(A$) > 0) + P7:
GOT01560

1700 PRINT@32,"":K=K+10:GOT01510
1710 IFN = OTHENCLS:PRINT" ❑ nothing

to delete":FORC = 1T01000:NEXT: RETURN
1720 CLS:PRINT"O PLEASE INPUT LINE

NO ❑❑❑❑❑❑❑❑❑❑❑
(PRESENT LINES NUMBERED IN TENS)"

1730 INPUTK:K2= K/10
1740 IFK2 > N ORK2<1ORK2< >INT(K2)

THENPRINT" ❑ THIS LINE DOES NOT
EXIST":RETURN

1750 K= K2:FORK3= K2 TON:T$(K3)=T$
(K3 + 1):NEXT:N = N —1:PRINT@95,
K•10;" ❑❑ ";TS(K):RETURN

1760 IFN =OTHENPRINT"D NOTHING TO
LIST":FORC=1T01000:NEXT:RETURN

1770 PRINT" ❑ PLEASE INPUT FIRST,LAST
LINE NO(PRESENT LINES NUMBERED
IN TENS)"

1780 INPUTK,K2:K=INT(K):K2=INT(K2):
K1 = K/10: K2 = K2/10

1790 IFK2 > N THENK2=N
1800 IFK1 <1THENK,1 =1
1810 IFK2 < K1 ANDK2=N THENRETURN
1820 IFK2 < K1 THENCLS:PRINT" ❑ BAD

SET OF LINES":GOT01770
1830 CLS:PRINT@96,;:FORK3 = K1 TOK2:

PRINTK31 0"D "T$(K3):NEXT
1840 RETURN
1850 K=K2—K1:K1=K2+1:K2=K1+K:IF

N = OTHEN1760ELSE1790
1860 NU =0:R = 0
1870 S=1
1880 1FAD$="" THENRETURN

Debugging long programs
Even the most experienced programmer
has trouble keying in a long program like
this assembler. No matter how deft your
fingers, you are bound to introduce a bug
somewhere.

Of course, you'll spot many of these
errors when you read over the program.
And the computer's own error messages
will help you track down others, if you are
clever enough to work out what they
mean.

But in a long program these error mes-
sages are sometimes not enough to help you
locate the error in question. A line might be
executed many times during a program,
but only falter when a variable has been set
to an acceptable value by a rogue line
elsewhere.

Luckily, the Dragon and the Tandy
both have trace programs which will help
you diagnose problems with your long
programs.

Switch on the trace by keying in IRON.
This is a direct statement and does not
require a line number. Then RUN your
problem program and the trace will fill
blank areas of the screen with the numbers
of the line of BASIC being executed, as
they are executed.

You can compare these against the
published program. To switch the trace
off, key in TROFF.

1890 X$ = LEFTCAD$,1):BD$ = MID$
(AD$,2):IFX$ = "*"THENR = R + P*S:
AD$ = BD$:GOT01870

1900 IFX$ = "+ "THENAD$ = BD$:GOTO
1880

1910 IFX$ = " — "THENAD$ = BD$:S = — S:
GOT01880

1920 Q= 0:1FX$ < >"%" THEN1950
1930 1FBD$ > = "0"ANDBD$ <"2"THEN

Q= Q*2 + ASC(BD$) — 48:BD$ = MID$
(BD$,2):GOT01930

1940 R= R + Q*S:AD$ = BD$: GOT01870
1950 1FX$ < > "$"ORBD$ <"0"ORBD$ >

="G"THEN1980
1960 Q2 = VAL(" &H" + LEFT$(BD$,1)):

BD$ = M IDC BDS,2):Q = Q*16 + Q2:X$ =
LEFT$(BD$,1)

1970 1F(X$ > "/"ANDX$ < ":")OR (X$ >
"@"ANDX$ < "G")THEN1960 ELSER =

R + Q*S:AD$ = BD$:GOT01870
1980 1FX$ < "A"ORX$ > "Z"THEN2010
1990 C$ = AMGOSUB1350:1FC$ < > ""

GOSUB1390
2000 R = R + RR (Q2)*S:AD$ = C$:GOT01870
2010 1FX$ < "0"ORX$ > "9"THENR = 0:

NU =1:RETURN
2020 1FAD$ > "/"ANDAD$ < ":"THENQ = Q*

10 + ASC(AD$) — 48:AD$ = MI DCADS,2):
G0T02020

2030 R = R + S*Q:GOT01870

SPEED UP THE ASSEMBLER
It is possible to speed up the assembler by
adding the speed poke POKE 65495,0 to the
start of Line 180. If you do this you'll also have
to change two other lines to slow down the
computer again before saving the data to tape.
So add POKE 65494,0 to the start of Lines 1420
and 1450.

HOW IT WORKS
Don't forget to CLEAR enough room for your
machine code program before you RUN the
assembler (see page 278). When you have
keyed in the program RUN it. Once the
assembler has initialized, it will display a
menu. The various options are spelt out there.

To enter a program press E for edit. The
program will then ask you for a line number.
With this assembler you have to give a BASIC
line number with each instruction. The line
numbers should be in tens and there should be
no more than one instruction with its as-
sociated data and addresses on one line.

The first line should specify an origin or
starting place for the machine code. This must
be above where you have CLEARed to. To
specify the origin key in ORG, followed by the
start address.

If you don't specify an origin the assembler
will take 35,000 as a default value and try to
assemble your program in ROM. Of course, it
won't work there, as the machine code values
can't be POKEd into ROM. But if it defaulted
to any other value it might corrupt the
program. When it has assembled at the default
value, the program tells you 'origin not found'.

Standard 6809 mnemonics are used. Hex
numbers should be prefixed with a $, binary
numbers should have a % in front. If no prefix
is used the assembler will assume that any
number it comes across is decimal.

Some assemblers for the Dragon and Tandy
will recognize ASCII codes if they are prefixed
with ' or !, but ASCII codes cannot be used
with this assembler. In consequence, the as-
sembler directive FCC which manipulates
ASCII characters cannot be used.

To edit a line before it has been entered, use
the cursor controls. The left arrow and right

arrow move the cursor along the line. The up
arrow can be used to insert something, the
down arrow deletes. Otherwise you can simply
overwrite the line.

The last line of any program should say END
but the assembler will put one in if you forget.

If, instead of pressing I ENTER after a line you
press another key, the program will take you
back to the menu. If you then press L, your
mnemonics will be listed for you to check.

If something is wrong, return to the menu
and press E again, then specify the number of
the line you want to change.

If you want to insert a line, go into the edit
mode and give your new line a number which
falls between the numbers of the lines you
want to put it between. When you list the
program again, it will have shoved the sub-
sequent lines along and renumbered them so
that they are in tens again. Only insert one line
at a time this way though.

To delete a line, go to the main menu and
press D, then specify the number of the line
you want to delete.

When you are satisfied that the program is
okay, return to the main menu and press A.
The program will then be assembled. When it
has finished it will give you an end address for
the program.

The save option—S on the main menu—
only saves the assembly language rrmenomics,
or source code. To save the assembler itself, use
the normal save routine (see page 23).

To save the machine code program—or
object code—you have to get out of the program
by pressing the BREAK key. Then key in:

CSAVEM "NAME",START,END,DEFEXEC

Here NAME is the name of the program, which
must be in quotes. START is the start address of
the program given as the origin. And END is
the end address which the assembler gave you
when it finished assembling.

The last number you must give it-
DEFEXEC—tells the Dragon where to start
when you tell it to EXECute the machine code
program. In other words it DEFines the EXEC
command. Usually this will be the same as the
start address.

Now you are ready to assemble any rou-
tines and assembly language programs.

TESTING
To test your assembler try keying in the
assembly language right-scrolling program
given on page 327. Whether you hand as-
semble that program or feed it into your
assembler, the machine code should read:

8E 06 00 E6 82 34 04 C6 1F A6 82 A7 01 5A
26 F9 35 04 E7 84 8C 04 00 2E EA 39

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Abbreviating keywords 	421
Adventure stories

structure 	 422
characters in 	 422
sources of inspiration 422-424

Adventure themes
plots and storylines 	422-423

Alien, flashing
ZX81 	 430-431

Arrays
in adventure games 	425,427

ASCII codes 	420-421
Assembler

Dragon, Tandy 	440-444
Axes for graphs

setting up 	415-416

B
Basic programming

plotting graphs
	

413-419
formatting
	

433-439
Commodore 64
graphics
	

420-421
BASIC, Simons'

Commodore 64
	

414

C
Character sets

Commodore 64 	 420
Colour for screen displays

433-434
Commodore key 420
Cursor control keys

Commodore 64 	420-421

D
Data storage 	 413
Descriptions

location, adventure games 425
Displays, improving 	433-439

colour
	

433-434
positioning
	

434-439
Dragon assembler 	440-444

how it works
	

444
testing
	

444
Dragon speed POKE
	

444
Drop routines

adventure games
	

426

E
Editing programs

Commodore 64 	 420

Extra locations
adventure games

Extending the grid
adventure games

F
FLASH command

Spectrum
Flashing alien

ZX81

G
Games programming

adventures, planning your own
422-427

GET routines
adventure games 	426

Graphics, ROM
Commodore 64 	 420

Graphs
standard forms 	414
irregular forms 	415
axes 	 415-416
legends 	 416
scaling 	 417-418
scaling factors 	 418
finishing touches 	419
negative and positive values 419

H
Help routine

in adventure games
Acorn, Commodore 64, Dragon,
Tandy, Vic 20 	 425
Spectrum 	 427

Inventory
adventure games
	

426
Inversing the screen

ZX81
	

432

L
Legends

for graphs 	 416

M
Machine code graphics

Vic 20 	 428-430
ZX8I 	 430-432

Machine code programming
animation

Vic 20, ZX81 	428-432

O
Objects in adventures

Acorn, Commodore 64, Dragon,
Tandy, Vic 20
	

424
Spectrum
	

427
On-board graphics

Commodore 64
	

420

P
Parabolas, drawing 	415
Planning screen displays

433-439
Postbytes

6809 Processor 	440-444
PRINT

Acorn Commodore 64,
Spectrum, Vic 20 	434

PRINT AT
Acorn 	 434
Spectrum 	 434,436

PRINT SPC
Commodore 64, Vic 20 434-435

PRINT TAB
Acorn 	 434,438
Commodore 64, Vic 20 	435
Spectrum 	 434

PRINT @
Dragon, Tandy 	 435

Processor
6809 	 440

Professional-looking programs
433-439

Program graphics
Commodore 64
	

420
Program symbols

Commodore 64
	

420
Pseudo hi-res graphics

ZX81
	

432

Q
Quote mode

Commodore 64

R
Reverse graphics symbols

Commodore 64
	

420
ROM graphics

Commodore 64
	

420

S
Scaling

a graph
	

417-418
factors
	

418
SCREEN command

Dragon, Tandy
	

439
Sine waves 	 415
Speed POKE

Dragon, Tandy
	

444
Stunt rider UDG

Vic 20
	

429
Submarine UDG

Vic 20
	

430
Superexpander cartridge

Vic 20
	

414

Tandy assembler 	440-444
how it works 	 444
testing 	 444

Tandy speed POKE 	444
Title pages, for games 433-439
Toggling the screen display

Commodore 64 	 420
Tokens

Commodore 64 	 421
TROFF command

Dragon, Tandy 	 444
TRON command

Dragon, Tandy 	 444

U
UDGs

Vic 20
	

428-429

V
Variables, list of

for adventure game
Acorn, Commodore 64, Dragon,
Tandy, Vic 20 	 425
Spectrum 	 427

assembler

	

423 	Dragon, Tandy 	430-444
Maximum values

	

423-424 	graph axes 	 419
Memory considerations, for

adventures 	 422
Minimum values

graph axes 	 419
434 Moving around the adventure

grid

	

430-431 	Acorn, Commodore 64, Dragon,
Tandy, Vic 20 	 424
Spectrum 	 427

420 	Words, in adventures 	424-426

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Worried about pirates learning the
secrets of your program techniques?
Find out how to PROTECT YOUR
PROGRAMS.

UDGs—versatile and varied. Discover
how to use them in large numbers and
how to CUSTOMIZE THE CHARACTER
SET.

/BAR GRAPHS AND PIE CHARTS are
an attractive alternative to linear
displays. Learn the techniques of plotting
them.

_/Enhance the playability of your games
programs when you employ routines for
JOYSTICK CONTROL FROM BASIC.

I If you've ever had screen problems,
take a good look at our guide to the pros
and cons of TVS AND MONITORS.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

